著者
Ikuko Kusaba Takahiro Nakao Hiroko Maita Shusei Sato Ryota Chijiiwa Emi Yamada Susumu Arima Mareshige Kojoma Kanji Ishimaru Ryo Akashi Akihiro Suzuki
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.1, pp.57-66, 2021-03-25 (Released:2021-03-25)
参考文献数
35
被引用文献数
3

Licorice (Glycyrrhiza uralensis) is a medicinal plant that contains glycyrrhizin (GL), which has various pharmacological activities. Because licorice is a legume, it can establish a symbiotic relationship with nitrogen-fixing rhizobial bacteria. However, the effect of this symbiosis on GL production is unknown. Rhizobia were isolated from root nodules of Glycyrrhiza glabra, and a rhizobium that can form root nodules in G. uralensis was selected. Whole-genome analysis revealed a single circular chromosome of 6.7 Mbp. This rhizobium was classified as Mesorhizobium by phylogenetic analysis and was designated Mesorhizobium sp. J8. When G. uralensis plants grown from cuttings were inoculated with J8, root nodules formed. Shoot biomass and SPAD values of inoculated plants were significantly higher than those of uninoculated controls, and the GL content of the roots was 3.2 times that of controls. Because uninoculated plants from cuttings showed slight nodule formation, we grew plants from seeds in plant boxes filled with sterilized vermiculite, inoculated half of the seedlings with J8, and grew them with or without 100 µM KNO3. The SPAD values of inoculated plants were significantly higher than those of uninoculated plants. Furthermore, the expression level of the CYP88D6 gene, which is a marker of GL synthesis, was 2.5 times higher than in inoculated plants. These results indicate that rhizobial symbiosis promotes both biomass and GL production in G. uralensis.
著者
Yuka Takatori Keiichi Shimizu Jun Ogata Hiroki Endo Kanji Ishimaru Shigehisa Okamoto Fumio Hashimoto
出版者
The Japanese Society for Horticultural Science
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.MI-029, (Released:2015-03-07)
被引用文献数
3 8

A full-length cDNA of a putative flavonoid 3'-hydroxylase (F3'H) gene encoding a key enzyme in the production of cyanidin was cloned from a lisianthus (Eustoma grandiflorum) petal. Lisianthus F3'H (EgF3'H) shares 75.1, 73.8, and 68.2% amino acid identity with Arabidopsis thaliana, Ipomoea nil, and Petunia hybrida, respectively. RT-PCR revealed that wild-type lisianthus flowers accumulated higher levels of F3'H mRNA during the early stages of development than in the late stages. The accumulated F3'H transcript levels in leaves were similar to those in flowers in the early stages of development. Overexpression of lisianthus F3'H cDNA altered flower color from red to blue in the I. nil cultivar ‘Violet’, which lacks a functional F3'H gene. In addition, the transgenic ‘Violet’ plants accumulated cyanidin and peonidin at similar levels to wild-type I. nil. Taking these findings together, this study demonstrates that EgF3'H functions as a flavonoid 3'-hydroxylase with a role in the synthesis of cyanidin and peonidin pigments.