著者
Megumi Ueno Sayaka Shibata Ikuo Nakanishi Ichio Aoki Ken-ichi Yamada Ken-ichiro Matsumoto
出版者
SOCIETY FOR FREE RADICAL RESEARCH JAPAN
雑誌
Journal of Clinical Biochemistry and Nutrition (ISSN:09120009)
巻号頁・発行日
pp.22-57, (Released:2022-12-08)
参考文献数
42

The impact of radiation-induced hydrogen peroxide (H2O2) on the biological effects of X-rays and carbon-ion beams was investigated using a selenium-deficient (SeD) mouse model. Selenium is the active center of glutathione peroxidase (GSH-Px), and SeD mice lack the ability to degrade H2O2. Male and female SeD mice were prepared by feeding a torula yeast-based SeD diet and ultrapure water. Thirty-day survival rates after whole-body irradiation, radiation-induced leg contracture, and MRI-based redox imaging of the brain were assessed and compared between SeD and normal mice. Thirty-day lethality after whole-body 5.6 Gy irradiation with X-rays or carbon-ion beams was higher in the SeD mice than in the normal mice, while SeD did not give the notable difference between X-rays and carbon-ion beams. SeD also did not affect the maximum leg contracture level after irradiation with carbon-ion beams, but delayed the leg contraction rate. In addition, no marked effects of SeD were observed on variations in the redox status of the brain after irradiation. Collectively, the present results indicate that SeD slightly altered the biological effects of X-rays and/or carbon-ion beams. GSH-Px processes endogenous H2O2 generated through mitochondrial respiration, but does not have the capacity to degrade H2O2 produced by irradiation.
著者
Yusuke Makino Megumi Ueno Yoshimi Shoji Minako Nyui Ikuo Nakanishi Koji Fukui Ken-ichiro Matsumoto
出版者
SOCIETY FOR FREE RADICAL RESEARCH JAPAN
雑誌
Journal of Clinical Biochemistry and Nutrition (ISSN:09120009)
巻号頁・発行日
pp.21-83, (Released:2021-12-25)
参考文献数
9

The quantitative measurement of free radicals in liquid using an X-band electron paramagnetic resonance (EPR) was systematized. Quantification of free radicals by EPR requires a standard sample that contains a known spin amount/concentration. When satisfactory reproducibility of the sample material, volume, shape, and positioning in the cavity for EPR measurements can be guaranteed, a sample tested and a standard can be directly compared and the process of quantification can be simplified. The purpose of this study was to simplify manual quantitative EPR measurement. A suitable sample volume for achieving a stable EPR intensity was estimated. The effects of different solvents on the EPR sensitivity were compared. The stability and reproducibility of the EPR intensity of standard nitroxyl radical solutions were compared among different types of sample tubes. When the sample tubes, sample volumes, and/or solvents were the same, the EPR intensity was reproduced with an error of 2% or less for μM samples. The quantified sample and the standard sample in the same solvent and the same volume drawn into the same sample tube was able to be directly compared. The standard sample for quantification should be measured just before or after every daily experiment.
著者
Megumi Ueno Takashi Shimokawa Emiko Sekine-Suzuki Minako Nyui Ikuo Nakanishi Ken-ichiro Matsumoto
出版者
SOCIETY FOR FREE RADICAL RESEARCH JAPAN
雑誌
Journal of Clinical Biochemistry and Nutrition (ISSN:09120009)
巻号頁・発行日
vol.68, no.2, pp.123-130, 2021-03-01 (Released:2021-03-01)
参考文献数
46
被引用文献数
2

Relatively young (4-week-old) selenium deficient (SeD) mice, which lack the activity of selenium-dependent glutathione peroxidase (GSH-Px) isomers, were prepared using torula yeast-based SeD diet. Mice were fed the torula yeast-based SeD diet and ultra-pure water. Several different timings for starting the SeD diet were assessed. The weekly time course of liver comprehensive GSH-Px activity after weaning was monitored. Protein expression levels of GPx1 and 4 in the liver were measured by Western blot analysis. Gene expression levels of GPx1, 2, 3, 4, and 7 in the liver were measured by quantitative real-time PCR. Apoptotic activity of thymocytes after hydrogen peroxide (H2O2) exposure was compared. Thirty-day survival rates after whole-body X-ray irradiation were estimated. Pre-birth or right-after-birth starting of the SeD diet in dams was unable to lead to creation of SeD mice due to neonatal death. This suggests that Se is necessary for normal birth and healthy growing of mouse pups. Starting the mother on the SeD diet from 2 weeks after giving birth (SeD-trial-2w group) resulted in a usable SeD mouse model. The liver GSH-Px activity of the SeD-trial-2w group was almost none from 4 week olds, but the mice survived for more than 63 weeks. Protein and gene expression of GPx1 was suppressed in the SeD-trial-2w group, but that of GPx4 was not. The thymocytes of the SeD-trial-2w group were sensitive to H2O2-induced apoptosis. The SeD-trial-2w group was sensitive to whole-body X-ray irradiation compared with control mice. The SeD-trial-2w model may be a useful animal model for H2O2/hydroperoxide-induced oxidative stress.
著者
Kazuhiro Kato Masaki Nagane Naoyuki Aihara Junichi Kamiie Masakatsu Miyanabe Shinobu Hiraki Xiaolin Luo Ikuo Nakanishi Yoshimi Shoji Ken-ichiro Matsumoto Tadashi Yamashita
出版者
SOCIETY FOR FREE RADICAL RESEARCH JAPAN
雑誌
Journal of Clinical Biochemistry and Nutrition (ISSN:09120009)
巻号頁・発行日
pp.20-73, (Released:2021-01-16)
参考文献数
41
被引用文献数
7

Polyphenols are abundant in vegetables and fruit. They have been shown to have various antitumor, antioxidant, and anti-inflammatory effects. Here, we extracted the lipid-soluble fraction of polyphenols from fermented sweet potato (Ipomoea batatas). These lipid-soluble polyphenols mainly contained caffeic acid derivatives with strong antioxidant ability, which we hypothesized to affect diseases for which oxidative stress is a factor, such as cancer. We therefore investigated the antitumor and chemo-sensitizing effects of lipid-soluble polyphenols on E0771 murine breast cancer cells. The lipid-soluble polyphenols accumulated in the cells’ cytoplasm due to its high lipophilicity, and reduced reactive oxygen species through its strong antioxidant activity. The lipid-soluble polyphenols also arrested the cell cycle at G0/G1 by suppressing Akt activity, and enhanced the cytotoxicity of anticancer agents. In this model, lipid-soluble polyphenols inhibited tumor growth and enhanced the efficacy of chemotherapy drugs. These results suggest the potential of lipid-soluble polyphenols as a functional food to support cancer therapy.
著者
Hiroko P. Indo Hsiu-Chuan Yen Ikuo Nakanishi Ken-ichiro Matsumoto Masato Tamura Yumiko Nagano Hirofumi Matsui Oleg Gusev Richard Cornette Takashi Okuda Yukiko Minamiyama Hiroshi Ichikawa Shigeaki Suenaga Misato Oki Tsuyoshi Sato Toshihiko Ozawa Daret K. St. Clair Hideyuki J. Majima
出版者
日本酸化ストレス学会
雑誌
Journal of Clinical Biochemistry and Nutrition (ISSN:09120009)
巻号頁・発行日
pp.14-42, (Released:2014-12-23)
参考文献数
90
被引用文献数
36 232

Fridovich identified CuZnSOD in 1969 and manganese superoxide dismutase (MnSOD) in 1973, and proposed ”the Superoxide Theory,” which postulates that superoxide (O2•−) is the origin of most reactive oxygen species (ROS) and that it undergoes a chain reaction in a cell, playing a central role in the ROS producing system. Increased oxidative stress on an organism causes damage to cells, the smallest constituent unit of an organism, which can lead to the onset of a variety of chronic diseases, such as Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis and other neurological diseases caused by abnormalities in biological defenses or increased intracellular reactive oxygen levels. Oxidative stress also plays a role in aging. Antioxidant systems, including non-enzyme low-molecular-weight antioxidants (such as, vitamins A, C and E, polyphenols, glutathione, and coenzyme Q10) and antioxidant enzymes, fight against oxidants in cells. Superoxide is considered to be a major factor in oxidant toxicity, and mitochondrial MnSOD enzymes constitute an essential defense against superoxide. Mitochondria are the major source of superoxide. The reaction of superoxide generated from mitochondria with nitric oxide is faster than SOD catalyzed reaction, and produces peroxynitrite. Thus, based on research conducted after Fridovich’s seminal studies, we now propose a modified superoxide theory; i.e., superoxide is the origin of reactive oxygen and nitrogen species (RONS) and, as such, causes various redox related diseases and aging.