著者
Chiharu Aizawa Masahiro Okabe Daisuke Takahashi Makoto Sagasaki Mao Watanabe Toshinari Fujimoto Yuuki Yoshioka Ai Katsuma Ai Kimura Daisuke Miyamoto Nana Sato Ken Okamoto Kimiyoshi Ichida Yoichi Miyazaki Takashi Yokoo
出版者
The Japanese Society of Internal Medicine
雑誌
Internal Medicine (ISSN:09182918)
巻号頁・発行日
pp.0678-22, (Released:2023-02-08)
参考文献数
31
被引用文献数
1

Exercise-induced acute kidney injury (EIAKI) is frequently complicated with renal hypouricemia (RHUC). In patients with RHUC, limiting anaerobic exercise can prevent EIAKI. However, it is challenging to reduce exercise intensity in athletes. We herein report a 16-year-old Japanese football player with familial RHUC with compound heterozygous mutations in urate transporter 1 (URAT1) who presented with recurrent EIAKI. As prophylaxis (hydration during exercise) could not prevent EIAKI, febuxostat was initiated. EIAKI was not observed for 16 months despite exercising intensively. Hence, non-purine-selective xanthine oxidoreductase inhibitors may decrease the incidence of EIAKI in athletes with RHUC.
著者
Shinobu Sugihara Ichiro Hisatome Masanari Kuwabara Koichiro Niwa Nani Maharani Masahiko Kato Kazuhide Ogino Toshihiro Hamada Haruaki Ninomiya Yukihito Higashi Kimiyoshi Ichida Kazuhiro Yamamoto
出版者
The Japanese Circulation Society
雑誌
Circulation Journal (ISSN:13469843)
巻号頁・発行日
vol.79, no.5, pp.1125-1132, 2015-04-24 (Released:2015-04-24)
参考文献数
41
被引用文献数
24 82

Background:Uric acid (UA) serves as an antioxidant in vascular endothelial cells. UA transporter 1 (URAT1) encoded by SLC22A12 is expressed in the kidney and vessels and its loss of function causes hypouricemia. The purpose of this study was to examine whether there is any endothelial dysfunction in patients with hypouricemia.Methods and Results:Twenty-six patients with hypouricemia (<2.5 mg/dl) and 13 healthy control subjects were enrolled. Endothelial function was evaluated using flow-mediated dilation (FMD). mRNA of UA transporters expressed in cultured human umbilical endothelial cells (HUVEC) was detected on RT-PCR. There was a positive correlation between FMD and serum UA in the hypouricemia group. URAT1 loss-of-function mutations were found in the genome of 21 of 26 patients with hypouricemia, and not in the other 5. In the hypouricemia groups, serum UA in homozygous and compound heterozygous patients was significantly lower than in other groups, suggesting that severity of URAT1 dysfunction may influence the severity of hypouricemia. Thirteen of 16 hypouricemia subjects with homozygous and compound heterozygote mutations had SUA <0.8 mg/dl and their FMD was lower than in other groups. HUVEC do not express mRNA of URAT1, suggesting the null role of URAT1 in endothelial function.Conclusions:Depletion of UA due to SLC22A12/URAT1 loss-of-function mutations causes endothelial dysfunction in hypouricemia patients. (Circ J 2015; 79: 1125–1132)
著者
Shinobu Sugihara Ichiro Hisatome Masanari Kuwabara Koichiro Niwa Nani Maharani Masahiko Kato Kazuhide Ogino Toshihiro Hamada Haruaki Ninomiya Yukihito Higashi Kimiyoshi Ichida Kazuhiro Yamamoto
出版者
日本循環器学会
雑誌
Circulation Journal (ISSN:13469843)
巻号頁・発行日
pp.CJ-14-1267, (Released:2015-02-23)
参考文献数
41
被引用文献数
10 82

Background:Uric acid (UA) serves as an antioxidant in vascular endothelial cells. UA transporter 1 (URAT1) encoded by SLC22A12 is expressed in the kidney and vessels and its loss of function causes hypouricemia. The purpose of this study was to examine whether there is any endothelial dysfunction in patients with hypouricemia.Methods and Results:Twenty-six patients with hypouricemia (<2.5 mg/dl) and 13 healthy control subjects were enrolled. Endothelial function was evaluated using flow-mediated dilation (FMD). mRNA of UA transporters expressed in cultured human umbilical endothelial cells (HUVEC) was detected on RT-PCR. There was a positive correlation between FMD and serum UA in the hypouricemia group. URAT1 loss-of-function mutations were found in the genome of 21 of 26 patients with hypouricemia, and not in the other 5. In the hypouricemia groups, serum UA in homozygous and compound heterozygous patients was significantly lower than in other groups, suggesting that severity of URAT1 dysfunction may influence the severity of hypouricemia. Thirteen of 16 hypouricemia subjects with homozygous and compound heterozygote mutations had SUA <0.8 mg/dl and their FMD was lower than in other groups. HUVEC do not express mRNA of URAT1, suggesting the null role of URAT1 in endothelial function.Conclusions:Depletion of UA due to SLC22A12/URAT1 loss-of-function mutations causes endothelial dysfunction in hypouricemia patients.