著者
Akira Yamazaki Ao Takezawa Kazusa Nishimura Ko Motoki Kyoka Nagasaka Ryohei Nakano Tetsuya Nakazaki Munetaka Hosokawa
出版者
The Japanese Society for Horticultural Science
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.QH-094, (Released:2023-10-17)

Chili pepper is cultivated in the absence of fruit-promoting treatments or insect pollinators. The fertilization ability of both males and females, as well as natural self-pollination ability under high temperatures, are necessary for autonomous set fruit under high temperatures. The reproductive traits related to autonomous self-pollination ability and fertilization ability of both males and females after pollination under control (CK) and high temperature (HT) treatments were investigated in this study. ‘Takanotsume’ (TK) showed a significantly higher percentage of autonomous fruit set than ‘Peruvian Purple’ (PP) in both CK and HT treatments, suggesting that TK has a strong autonomous fruit set regardless of temperature. On the other hand, the percentage of autonomous fruit set of PP was 0% in the HT treatment, while autonomous fruit set was observed in the CK treatment. Therefore, TK had autonomous fruit set ability even at high temperatures when PP did not have any. TK had more pollen on the stigma than PP, suggesting that TK has a higher ability for autonomous self-pollination. Flower morphology was not considered a factor in the autonomous self-pollination of TK. In contrast, TK tended to release more pollen than PP. One factor that can support autonomous self-pollination is pollen dispersion. A significant difference was observed in the fruit set rate during artificial pollination between the treatments (CK and HT) of the pollen parent and the cultivars (TK and PP) of the seed parent. In fact, female fertility in TK was higher than that in PP, regardless of the temperature condition. Almost no fruit set of PP was observed via autonomous self-pollination in the HT treatment, but fruits were set by artificial pollination using both the pollen and pistil of PP in the HT treatment. This result is consistent with the finding that PP exhibits decreased autonomous self-pollination at high temperatures. The higher autonomous fruit-set ability of TK than PP under high temperatures may be attributed not only to superior female fertility, but also to its autonomous self-pollination ability under high temperatures. Therefore, pollen dispersal ability under high temperatures was considered a key factor for autonomous fruit-set.
著者
Ko Motoki Yu Kinoshita Ryohei Nakano Munetaka Hosokawa Tetsuya Nakazaki
出版者
The Japanese Society for Horticultural Science
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.QH-018, (Released:2022-12-15)
被引用文献数
1

Floral induction by grafting without vernalization treatment (NV grafting method) has potential to shorten breeding times and to diversify the seed production of cabbage, an important leafy vegetable with a long and absolute low temperature exposure requirement for its floral induction. However, it is unknown whether the NV grafting method can be actually used for cabbage breeding and seed production. This is because the NV grafting method’s effect on the field performance of obtained progenies has not been investigated, as opposed to the conventional floral induction method by vernalization treatment. Therefore, in this study we compared the effects of two different floral induction methods on the agricultural traits of the obtained progenies. Two clonal lines of ‘Watanabe-seiko No.1’ cabbage were used for the experiment. In the two-year field experiment, we observed a consistent effect of clonal lines on vegetative growth; however, almost no effects of the floral induction methods on either vegetative or reproductive growth were observed. This was further supported by similar expression levels of FLOWERING LOCUS C homologs in the progenies at the young seedling stage. Pollen production and seed formation of the progenies were confirmed regardless of the floral induction method. In conclusion, cabbage seeds obtained by the NV grafting method are likely to show the same traits as those obtained by the conventional vernalization method. This indicates the direct applicability of this method to cabbage breeding and seed production.