著者
WATANABE Shun-ichi I. MURATA Akihiko SASAKI Hidetaka KAWASE Hiroaki NOSAKA Masaya
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2019-045, (Released:2019-04-15)
被引用文献数
9

This study evaluates possible changes in tropical cyclone (TC) precipitation over Japan under a future warmer climate using an ensemble projection generated by a non-hydrostatic regional climate model with a resolution of 5 km (NHRCM05) under the RCP8.5 scenario. NHRCM05 reproduces TC precipitation and TC intensity more accurately than does a general circulation model with a resolution of 20 km. The number of TCs approaching Japan is projected to decrease under the future climate, while the TC precipitation rate increases. As these two effects cancel each other out, total TC precipitation, and the frequency of the moderate TC precipitation that is usual under the present climate, show no significant change. On the other hand, the frequency of extreme TC precipitation increases significantly because the intensification in the TC precipitation rate outweighs the reduction in TC frequency. The increase in the TC precipitation rate is caused primarily by the increase in water vapor around the TCs, which in turn results from the change in environmental water vapor. The intensification and structural changes to TCs also contribute to the enhanced TC precipitation.
著者
KAWASE Hiroaki SASAI Takahiro YAMAZAKI Takeshi ITO Rui DAIRAKU Koji SUGIMOTO Shiori SASAKI Hidetaka MURATA Akihiko NOSAKA Masaya
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2018-022, (Released:2018-01-30)
被引用文献数
27

Geographical distributions of heavy snowfall, especially in the Pacific Ocean side of Japan, have not been elucidated due to low occurrence frequency of heavy snowfall and limited number of snow observation points. This study investigates the characteristics of synoptic conditions for heavy daily snowfall from western to northeastern Japan in the present climate, analyzing high-resolution regional climate ensemble experiments with 5-km grid spacing. The Japanese 55-year Reanalysis (JRA-55) and the 10-ensemble members of the database for Policy Decision making for Future climate change (d4PDF) historical experiments are applied to the lateral boundary conditions of the regional climate model. Dynamical downscaling using d4PDF (d4PDF-DS) enables us to evaluate much heavier snowfall events than those simulated by dynamical downscaling using JRA-55 (JRA55-DS). Over the Sea of Japan side, heavy snowfall occurs due to cold air outbreaks, while over the Pacific Ocean side, heavy snowfall is brought by extratropical cyclones passing along the Pacific Ocean coast. A comparison between JRA55-DS and d4PDF-DS indicates that heavier snowfall can occur due to more developed extratropical cyclones and enhanced cold air damming in the Tokyo metropolitan area. The geographical distributions of extremely heavy snowfall are different between two typical synoptic conditions, i.e., cold air outbreaks and extratropical cyclones. The difference is much clearer in the extremely heavy snowfall events than in all snowfall events. Heavy daily snowfall occurs in January and February on the Pacific Ocean side, in December and January on the Sea of Japan side, and in November and March in high mountainous areas. Saturated water vapor pressure is largest around 0 ℃ under the snowing conditions. Synoptic conditions from late fall to winter are closely related to preferable conditions for heavy snowfall over the mountainous areas where the surface air temperature is much less than 0 ℃ in the heavy snowfall events.
著者
MURATA Akihiko WATANABE I. Shun-ichi SASAKI Hidetaka KAWASE Hiroaki NOSAKA Masaya
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2019-035, (Released:2019-02-04)
被引用文献数
7

A novel method for detecting tropical cyclones in high-resolution climate model simulations is proposed herein and subjected to examination. The proposed method utilizes a two-dimensional scatterplot based on two quantities that represent the radial gradient and the tangential asymmetry of mid-to upper-level thickness around a simulated vortex. A comparison between the modeled and observed tropical cyclones using the non-hydrostatic regional climate model (NHRCM) with 20-km grid spacing under reanalysis-driven boundary conditions for one year revealed that no cyclones were missed and there was only one false alarm over a part of the western North Pacific near Japan. The simulated vortices were classified into two categories; tropical cyclones and extratropical cyclones. These two groups, having specific features, were also found in the results using present-day climate datasets, indicating that the tropical cyclones were reasonably distinguished from extratropical cyclones although a one-by-one comparison could not, in principle, be conducted. Comparison of the results obtained from datasets with 5-km and 20-km grid spacing demonstrated that the detection scheme was only weakly dependent on the horizontal resolution. This dependence was further reduced by using the radial gradient over the outer radii instead of near the center of the vortex. The resolution-independent feature in this method is due to a procedure in which the tangential asymmetry of mid-to upper-level thickness is utilized instead of the relative vorticity at 850 hPa, often used in conventional schemes. This procedure allows the method to identify tropical cyclones without the need to determine a grid-dependent threshold. The method proposed here provides a useful tool for detecting tropical cyclones in high-resolution climate simulations.