著者
WATANABE Shingo FUJITA Mikiko KAWAZOE Sho SUGIMOTO Shiori OKADA Yasuko MIZUTA Ryo ISHII Masayoshi
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2019-038, (Released:2019-03-13)
被引用文献数
4

Future changes in the climatological distribution of clear air turbulence (CAT) and its seasonality over the North Pacific are estimated based on an ensemble of climate projections under warming for the globally averaged surface air temperature of 2 K relative to pre-industrial levels, which includes over 3000 years of ensembles using a 60-km atmospheric general circulation model (AGCM). The AGCM outputs are interpolated to a 1.25° horizontal resolution, and the climatological CAT frequency is computed. The CAT broadly decreases in the mid-latitude central to western North Pacific along with the anticyclonic (south) side of its present-day high-frequency band extending from Japan to the eastern North Pacific. Meanwhile, large relative increases are found outside the band, implying an increased risk of CAT encounters. Uncertainty in future CAT changes due to uncertainties in the spatial pattern of sea surface temperature change is addressed for the first time using six selected Climate Model Intercomparison Project Phase-5 (CMIP5) climate models. The uncertainty is greatest in the boreal winter and spring over the central North Pacific, and is associated with uncertainty in future changes in the jet stream and upper-level synoptic-scale disturbances.
著者
KAWAZOE Sho FUJITA Mikiko SUGIMOTO Shiori OKADA Yasuko WATANABE Shingo
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2020-067, (Released:2020-08-28)
被引用文献数
2

This study investigates future changes to extremely cool days (ECDs) during the summer (June-August) season in northeastern Japan by applying self-organizing map (SOM) technique to large ensemble simulations from the “database for Policy Decision making for Future climate change” (d4PDF). Two separate SOMs, one trained on mean sea level pressure using a combination of JRA-55 reanalysis and d4PDF to evaluate model performance, and a “master” SOM, which trained the SOMs using historical, +2K, and +4K simulations, were created to investigate possible climate change impacts to future ECDs. For model evaluation, summer climatology and ECDs were confirmed to occur with similar frequencies between circulation patterns in the JRA-55 and d4PDF. Surface temperature anomalies and horizontal wind composite from several high frequency ECD nodes exhibit similar spatial patterns for all days and ECD occurring in the node, with ECD composites depicting particularly strong northeasterly winds, commonly referred to as Yamase, blowing from high latitudes toward northeast Japan. Future changes using “master” SOMs suggest a gradual shift (from +2K to +4K) in preferred circulation patterns that result in ECDs, with the greatest increase in frequency associated to those with a strong low pressure system off eastern Japan and a moderate intensity Okhotsk Sea high, and decreased ECDs to those with either a strong Okhotsk Sea high or westward extension of the North Pacific high. Lastly, changes to the intensity of future ECDs are investigated by examining low level thermal advection. Results suggest that circulation patterns associated with increased ECD frequency coincide with those with very strong cold air advection for all climates, though the magnitude differs based on circulation patterns. Future changes show a weakening cold air advection and decreasing ECDs, due in large part to weakening meridional temperature gradient east of Japan.
著者
KAWASE Hiroaki SASAI Takahiro YAMAZAKI Takeshi ITO Rui DAIRAKU Koji SUGIMOTO Shiori SASAKI Hidetaka MURATA Akihiko NOSAKA Masaya
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2018-022, (Released:2018-01-30)
被引用文献数
27

Geographical distributions of heavy snowfall, especially in the Pacific Ocean side of Japan, have not been elucidated due to low occurrence frequency of heavy snowfall and limited number of snow observation points. This study investigates the characteristics of synoptic conditions for heavy daily snowfall from western to northeastern Japan in the present climate, analyzing high-resolution regional climate ensemble experiments with 5-km grid spacing. The Japanese 55-year Reanalysis (JRA-55) and the 10-ensemble members of the database for Policy Decision making for Future climate change (d4PDF) historical experiments are applied to the lateral boundary conditions of the regional climate model. Dynamical downscaling using d4PDF (d4PDF-DS) enables us to evaluate much heavier snowfall events than those simulated by dynamical downscaling using JRA-55 (JRA55-DS). Over the Sea of Japan side, heavy snowfall occurs due to cold air outbreaks, while over the Pacific Ocean side, heavy snowfall is brought by extratropical cyclones passing along the Pacific Ocean coast. A comparison between JRA55-DS and d4PDF-DS indicates that heavier snowfall can occur due to more developed extratropical cyclones and enhanced cold air damming in the Tokyo metropolitan area. The geographical distributions of extremely heavy snowfall are different between two typical synoptic conditions, i.e., cold air outbreaks and extratropical cyclones. The difference is much clearer in the extremely heavy snowfall events than in all snowfall events. Heavy daily snowfall occurs in January and February on the Pacific Ocean side, in December and January on the Sea of Japan side, and in November and March in high mountainous areas. Saturated water vapor pressure is largest around 0 ℃ under the snowing conditions. Synoptic conditions from late fall to winter are closely related to preferable conditions for heavy snowfall over the mountainous areas where the surface air temperature is much less than 0 ℃ in the heavy snowfall events.