著者
Rui YANG Raphael SHU Hideki NAKAYAMA
出版者
The Institute of Electronics, Information and Communication Engineers
雑誌
IEICE TRANSACTIONS on Information and Systems (ISSN:09168532)
巻号頁・発行日
vol.E105-D, no.9, pp.1537-1545, 2022-09-01

Generative Adversarial Networks (GANs) are one of the most successful learning principles of generative models and were wildly applied to many generation tasks. In the beginning, the gradient penalty (GP) was applied to enforce the discriminator in GANs to satisfy Lipschitz continuity in Wasserstein GAN. Although the vanilla version of the gradient penalty was further modified for different purposes, seeking a better equilibrium and higher generation quality in adversarial learning remains challenging. Recently, DRAGAN was proposed to achieve the local linearity in a surrounding data manifold by applying the noised gradient penalty to promote the local convexity in model optimization. However, we show that their approach will impose a burden on satisfying Lipschitz continuity for the discriminator. Such conflict between Lipschitz continuity and local linearity in DRAGAN will result in poor equilibrium, and thus the generation quality is far from ideal. To this end, we propose a novel approach to benefit both local linearity and Lipschitz continuity for reaching a better equilibrium without conflict. In detail, we apply our synchronized activation function in the discriminator to receive a particular form of noised gradient penalty for achieving local linearity without losing the property of Lipschitz continuity in the discriminator. Experimental results show that our method can reach the superior quality of images and outperforms WGAN-GP, DiracGAN, and DRAGAN in terms of Inception Score and Fréchet Inception Distance on real-world datasets.