著者
WU Jing KUROSAKI Yasunori SEKIYAMA Tsuyoshi Thomas MAKI Takashi
出版者
公益社団法人 日本気象学会
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2023-004, (Released:2022-10-27)

In drylands, the dry vegetation coverage affects dust occurrence by modulating threshold friction velocity (or wind speed) for dust emission. However, there has been little research into quantifying the effect of dry vegetation coverage on dust occurrence. This study investigated spatial and temporal variations of dust occurrence and three definitions of strong wind frequency over the Gobi Desert and surrounding regions in March and April, months when dust occurrence is frequent, during 2001-2021. We evaluated the effects of variations in dry vegetation on dust occurrence by using the threat scores of forecasted dust occurrences for each strong wind definition. Our results indicate that dry vegetation, which was derived from the MODIS Soil Tillage Index, affects dust occurrence more remarkably in April than in March. In March, land surface parameters such as soil freeze-thaw and snow cover, in addition to dry vegetation coverage, should be considered to explain dust variations in that month. However, use of the threshold wind speed estimated from dry vegetation coverage improved the prediction accuracy of dust occurrence in April. Therefore, we propose that the dry vegetation coverage is a key factor controlling dust occurrence variations in April. The findings imply that estimation of dry vegetation coverage should be applied to dust models.
著者
KAJINO Mizuo DEUSHI Makoto SEKIYAMA Tsuyoshi Thomas OSHIMA Naga YUMIMOTO Keiya TANAKA Taichu Yasumichi CHING Joseph HASHIMOTO Akihiro YAMAMOTO Tetsuya IKEGAMI Masaaki KAMADA Akane MIYASHITA Makoto INOMATA Yayoi SHIMA Shin-ichiro TAKAMI Akinori SHIMIZU Atsushi HATAKEYAMA Shiro SADANAGA Yasuhiro IRIE Hitoshi ADACHI Kouji ZAIZEN Yuji IGARASHI Yasuhito UEDA Hiromasa MAKI Takashi MIKAMI Masao
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2019-020, (Released:2018-12-09)
被引用文献数
36

Model performance of a regional-scale meteorology – chemistry model (NHM-Chem) has been evaluated for the consistent predictions of the chemical, physical, and optical properties of aerosols. These properties are essentially important for the accurate assessment of air quality and health hazards, contamination of land and ocean ecosystems, and regional climate changes due to aerosol-cloud-radiation interaction processes. Currently, three optional methods are available: the 5-category non-equilibrium, 3-category non-equilibrium, and bulk equilibrium methods. These three methods are suitable for the predictions of regional climate, air quality, and operational forecasts, respectively. In this paper, the simulated aerosol chemical, physical, and optical properties and their consistency were evaluated by using various observation data in East Asia. The simulated mass, size, and deposition of SO42- and NH4+ agreed well with the observations, whereas those of NO3-, sea-salt, and dust needed improvement. The simulated surface mass concentration (PM10 and PM2.5) and spherical extinction coefficient agreed well with the observations. The simulated aerosol optical thickness and dust extinction coefficient were significantly underestimated.