著者
Takayuki Ishida Satoko Naoe Masanori Nakakuki Hiroyuki Kawano Kazunori Imada
出版者
一般社団法人 日本動脈硬化学会
雑誌
Journal of Atherosclerosis and Thrombosis (ISSN:13403478)
巻号頁・発行日
pp.28167, (Released:2015-05-27)
参考文献数
34
被引用文献数
1 21

Aim: Vascular endothelial dysfunction is considered an early predictor of atherosclerosis. It has been proven that elevated blood levels of free fatty acids pose a substantial risk for the development of cardiovascular disease. In this study, we examined the effects of palmitic acid (PA), a saturated fatty acid, on endothelial function by using the expression of adhesion molecule, cytokines, and inflammatory protein as indicators, as well as investigated the effects of eicosapentaenoic acid, an n-3 polyunsaturated fatty acid.Methods: Human umbilical vein endothelial cells (HUVEC) were exposed to PA and EPA.Results: When HUVEC were exposed to PA, there was an increase in the expression of adhesion molecule, cytokines, and inflammatory protein (ICAM-1, MCP-1, interleukin-6, PTX3). PA augmented the expression of long-chain acyl-CoA synthetase (ACSL) and the cyclin-dependent kinase inhibitor p21, and enhanced the phosphorylation of p65, a component of NF-κB. ACSL inhibition and siRNA-mediated ACSL3 knockdown suppressed the PA-induced increase in the expression of adhesion molecule, cytokines, and inflammatory protein, and ACSL inhibition suppressed the enhancement of p65 phosphorylation. In addition, p21 knockdown suppressed the PA-induced increase in the expression of MCP-1 and ICAM-1. EPA suppressed the PA-induced increase in the expression of ACSL and p21, the enhancement of p65 phosphorylation, as well as the associated increase in the expression of ICAM-1, MCP-1, interleukin-6, and PTX3.Conclusions: These results suggest that the ACSL, p21, and NF-κB-dependent pathway may possibly be involved in PA-induced vascular endothelial dysfunction, and that EPA ameliorates this at least in part through the regulation of ACSL3 expression.
著者
Toru Miyoshi Satoko Naoe Hiroyuki Wakabayashi Takashi Yano Takuya Mori Shingo Kanda Makoto Arita Hiroshi Ito
出版者
Japan Atherosclerosis Society
雑誌
Journal of Atherosclerosis and Thrombosis (ISSN:13403478)
巻号頁・発行日
pp.64135, (Released:2023-08-02)
参考文献数
39
被引用文献数
2

Aims: MND-2119 is a novel once-daily dose self-emulsifying formulation of highly purified eicosapentaenoic acid ethyl ester (EPA-E) and is approved as an antihyperlipidemia agent in Japan. It has improved absorption and achieves higher plasma EPA concentrations at Cmax than conventional EPA-E. In the JELIS trial, concomitant use of EPA-E with statin therapy significantly reduced atherosclerotic cardiovascular disease (ASCVD) risks. As a potential mechanism of action of EPA, endogenous formation of EPA-derived anti-inflammatory metabolites is receiving greater attention. This study aims to investigate the endogenous formation of EPA-derived anti-inflammatory metabolites following single and multiple administrations of MND-2119. Methods: Healthy adult male subjects were randomly assigned to a nonintervention (control) group, MND-2119 2-g/day group, MND-2119 4-g/day group, or EPA-E 1.8-g/day group for 7 days (N=8 per group). Plasma fatty acids and EPA-derived metabolites were evaluated. Peripheral blood neutrophils were isolated, and the production of EPA-derived metabolites from in vitro stimulated neutrophils was evaluated. Results: After single and multiple administrations of MND-2119 2 g/day, there were significant increases in plasma EPA concentration, 18-hydroxyeicosapentaenoic acid (18-HEPE), and 17,18-epoxyeicosatetraenoic acid compared with those of EPA-E 1.8 g/day. They were further increased with MND-2119 4 g/day administration. In neutrophils, the EPA concentration in the MND-2119 2-g/day group was significantly higher compared with that in the EPA-E 1.8-g/day group after multiple administration, and 18-HEPE production was positively correlated with EPA concentration. No safety issues were noted. Conclusions: These results demonstrate that MND-2119 increases the plasma and cellular concentrations of EPA and EPA-derived metabolites to a greater extent than conventional EPA-E formulations.