著者
Daisuke Komori Shinichirou Nakamura Masashi Kiguchi Asako Nishijima Dai Yamazaki Satoshi Suzuki Akiyuki Kawasaki Kazuo Oki Taikan Oki
出版者
水文・水資源学会/日本地下水学会/日本水文科学会/陸水物理研究会
雑誌
Hydrological Research Letters (ISSN:18823416)
巻号頁・発行日
vol.6, pp.41-46, 2012 (Released:2012-04-28)
参考文献数
8
被引用文献数
52 159

A massive flood, the maximum ever recorded in Thailand, struck the Chao Phraya River in 2011. The total rainfall during the 2011 rainy season was 1,439 mm, which was 143% of the average rainy season rainfall during the period 1982–2002. Although the gigantic Bhumipol and Sirikit dams stored approximately 10 billion m3 by early October, the total flood volume was estimated to be 15 billion m3. This flood caused tremendous damage, including 813 dead nationwide, seven industrial estates, and 804 companies with inundation damage, and total losses estimated at 1.36 trillion baht (approximately 3.5 trillion yen). The Chao Phraya River watershed has experienced many floods in the past, and floods on the same scale as the 2011 flood are expected to occur in the future. Therefore, to prepare of the next flood disaster, it is essential to understand the characteristics of the 2011 Chao Phraya River Flood. This paper proposes countermeasures for preventing major flood damage in the future.
著者
Kei YOSHIMURA Taikan OKI Nobuhito OHTE Shinjiro KANAE
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.82, no.5, pp.1315-1329, 2004 (Released:2004-12-17)
参考文献数
33
被引用文献数
56 86

This study investigated the dynamic motion of atmospheric water advection by an analytic method called colored moisture analysis (CMA), that allows for the estimation and visualization of atmospheric moisture advection from specific source regions. The CMA water transport model includes balance equations with the upstream scheme and, uses external meteorological forcings. The forcings were obtained from the Global Energy and Water Cycle Experiment (GEWEX) Asian Monsoon Experiments (GAME) reanalysis. A numerical simulation with 79 global sections was run for April to October 1998. The results clearly showed seasonal variations in advection associated with large-scale circulation fields, particularly a difference between rainy and dry seasons associated with the Asian monsoon. The paper also proposes a new definition of southwest Asian monsoon onset and decay, based on the amount of water originating from the Indian Ocean. Earliest onset occurs over southeastern Indochina around 16- 25 May. Subsequent onset occurs in India one month later. These results agree with previous studies on the Asian monsoon onset/end. The CMA provides a clearer, more integrated view of temporal and spatial changes in atmospheric circulation fields, particularly Asian monsoon activities, than previous studies that focused only on one or two distinct circulation features, such as precipitation or wind speed. Furthermore, monsoon transition in a specific year, 1998, first became analyzable, whereas the previous studies used climatologies.
著者
Adisorn Champathong Daisuke Komori Masashi Kiguchi Thada Sukhapunnaphan Taikan Oki Tosiyuki Nakaegawa
出版者
Japan Society of Hydrology and Water Resources (JSHWR) / Japanese Association of Groundwater Hydrology (JAGH) / Japanese Association of Hydrological Sciences (JAHS) / Japanese Society of Physical Hydrology (JSPH)
雑誌
Hydrological Research Letters (ISSN:18823416)
巻号頁・発行日
vol.7, no.2, pp.36-41, 2013 (Released:2013-06-08)
参考文献数
25
被引用文献数
20 23

We projected future river discharge in the Chao Phraya River basin and evaluated the uncertainty in future climate projections by using different resolutions and ensemble experiments of the Atmospheric General Circulation Model of the Meteorological Research Institute (MRI-AGCM). We also obtained estimates of precipitation, evaporation, runoff, and river discharge under climate conditions projected for the late 21st century. The results show that precipitation is projected to significantly increase in the future during April to August, excluding May. The projected river discharge at Nakhon Sawan located in the central region shows a peak in September, a delay of one month after the maximum monthly mean precipitation. The estimated reduction in river discharge for January and February was robust based on all members of the 60-km mesh MRI-AGCM ensembles changing in the same direction as that of the 20-km mesh MRI-AGCM. The uncertainty assessment conducted in this study could lead to increased robustness in projected changes in mean river discharge in the late 21st century for this basin.