著者
Trismidianto Tri Wahyu Hadi Sachinobu Ishida Qoosaku Moteki Atsuyoshi Manda Satoshi Iizuka
出版者
(公社)日本気象学会
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.12, pp.6-11, 2016 (Released:2016-01-25)
参考文献数
26
被引用文献数
23

This study analyzed the oceanic convective systems that induced heavy rainfall over the western coast of Sumatra on 28 October 2007. The convective systems that satisfied the definition of a mesoscale convective complex (MCC), as identified by infrared satellite imagery, developed repeatedly for 16 hours over the Indian Ocean near Sumatra. The MCC developed from midnight on 27 October until the early morning of 28 October, and it was intensified by the land breeze from Sumatra. New convective systems around the decaying MCC were generated during the daytime of 28 October, and they propagated to the western coast of Sumatra in the evening because of a divergent outflow from a cold pool. The combination of the land breeze from Sumatra and cold pool outflows from the decaying MCC was a significant factor in the formation of the convective system that induced strong rainfall up to 46 mm h−1 over the western coast of Sumatra.
著者
Erma YULIHASTIN Tri Wahyu HADI Muhammad Rais ABDILLAH Irineu Rakhmah FAUZIAH Nining Sari NINGSIH
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.100, no.1, pp.99-113, 2022 (Released:2022-02-22)
参考文献数
32
被引用文献数
1 7

Early morning precipitation (EMP) events occur most frequently during January and February over the northern coast of West Java and are characterized by propagating systems originating from both inland and offshore. The timing of EMP is determined by the initial location, direction, and speed of the propagating precipitating system. This study explores processes that characterize such propagating precipitation systems by performing composite analysis and real-case numerical simulations of selected events using the Weather and Research Forecasting (WRF) model with a cloud-permitting horizontal resolution of 3 km. In the composite analysis, EMP events are classified according to the strength of the northerly background wind (VBG), defined as the 925 hPa meridional wind averaged over an area covering western Java and the adjacent sea. We find that under both strong northerly (SN) and weak northerly (WN) wind conditions, EMP is mainly induced by a precipitation system that propagates from sea to land. For WN cases, however, precipitating systems that propagate from inland areas to the sea also play a role. The WRF simulations suggest that mechanisms akin to cold pool propagation and advection by prevailing winds are responsible for the propagating convection that induces EMP, which also explains the dependence of EMP frequency on the strength of VBG. On the basis of the WRF simulations, we also discuss the roles of sea breeze and gravity waves in the initiation of convection.