著者
JUDT Falko KLOCKE Daniel RIOS-BERRIOS Rosimar VANNIERE Benoit ZIEMEN Florian AUGER Ludovic BIERCAMP Joachim BRETHERTON Christopher CHEN Xi DÜBEN Peter HOHENEGGER Cathy KHAIROUTDINOV Marat KODAMA Chihiro KORNBLUEH Luis LIN Shian-Jiann NAKANO Masuo NEUMANN Philipp PUTMAN William RÖBER Niklas ROBERTS Malcolm SATOH Masaki SHIBUYA Ryosuke STEVENS Bjorn VIDALE Pier Luigi WEDI Nils ZHOU Linjiong
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2021-029, (Released:2021-01-21)
被引用文献数
26

Recent progress in computing and model development has initiated the era of global storm-resolving modeling and with it the potential to transform weather and climate prediction. Within the general theme of vetting this new class of models, the present study evaluates nine global-storm resolving models in their ability to simulate tropical cyclones (TCs). Results show that, broadly speaking, the models produce realistic TCs and remove longstanding issues known from global models such as the deficiency to accurately simulate TC intensity. However, TCs are strongly affected by model formulation, and all models suffer from unique biases regarding the number of TCs, intensity, size, and structure. Some models simulated TCs better than others, but no single model was superior in every way. The overall results indicate that global storm-resolving models are able to open a new chapter in TC prediction, but they need to be improved to unleash their full potential.
著者
DUEBEN Peter D. WEDI Nils SAARINEN Sami ZEMAN Christian
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2020-016, (Released:2020-03-17)
被引用文献数
2 24

Global simulations with 1.45 km grid-spacing are presented that were performed with the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). Simulations are uncoupled (without ocean, sea-ice or wave model), using 62 or 137 vertical levels and the full complexity of weather forecast simulations including recent date initial conditions, real-world topography, and state-of-the-art physical parametrizations and diabatic forcing including shallow convection, turbulent diffusion, radiation and five categories for the water substance (vapour, liquid, ice, rain, snow). Simulations are evaluated with regard to computational efficiency and model fidelity. Scaling results are presented that were performed on the fastest supercomputer in Europe - Piz Daint (Top 500, Nov 2018). Important choices for the model configuration at this unprecedented resolution for the IFS are discussed such as the use of hydrostatic and non-hydrostatic equations or the time resolution of physical phenomena which is defined by the length of the time step. Our simulations indicate that the IFS model — based on spectral transforms with a semi-implicit, semi-Lagrangian time-stepping scheme in contrast to more local discretisation techniques — can provide a meaningful baseline reference for O(1) km global simulations.