著者
JUDT Falko KLOCKE Daniel RIOS-BERRIOS Rosimar VANNIERE Benoit ZIEMEN Florian AUGER Ludovic BIERCAMP Joachim BRETHERTON Christopher CHEN Xi DÜBEN Peter HOHENEGGER Cathy KHAIROUTDINOV Marat KODAMA Chihiro KORNBLUEH Luis LIN Shian-Jiann NAKANO Masuo NEUMANN Philipp PUTMAN William RÖBER Niklas ROBERTS Malcolm SATOH Masaki SHIBUYA Ryosuke STEVENS Bjorn VIDALE Pier Luigi WEDI Nils ZHOU Linjiong
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2021-029, (Released:2021-01-21)
被引用文献数
26

Recent progress in computing and model development has initiated the era of global storm-resolving modeling and with it the potential to transform weather and climate prediction. Within the general theme of vetting this new class of models, the present study evaluates nine global-storm resolving models in their ability to simulate tropical cyclones (TCs). Results show that, broadly speaking, the models produce realistic TCs and remove longstanding issues known from global models such as the deficiency to accurately simulate TC intensity. However, TCs are strongly affected by model formulation, and all models suffer from unique biases regarding the number of TCs, intensity, size, and structure. Some models simulated TCs better than others, but no single model was superior in every way. The overall results indicate that global storm-resolving models are able to open a new chapter in TC prediction, but they need to be improved to unleash their full potential.
著者
SUI Chung-Hsiung SATOH Masaki SUZUKI Kentaroh
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2020-024, (Released:2020-03-01)
被引用文献数
21

Precipitation efficiency (PE) is a useful concept for estimating precipitation under a given environmental condition. PE is used in various situations in meteorology: to evaluate severe precipitation associated with a single storm event; as a parameter of cumulus convective parameterization; and to separate clouds and precipitation in climate projection studies. PE has been defined in several ways. In this review, we start with definitions of PE from microscopic and macroscopic perspectives, and provide estimates of PE based on observational and modeling approaches. Then, we review PE in shallow and organized deep convective systems that provide either a conceptual framework or physical constraints on representations of convection in models. Specifically, we focus on the roles of PE in cloud-radiative feedbacks to climate variability. Finally, we argue the usefulness of PE for investigating cloud and precipitation changes in climate projection studies.
著者
KODAMA Shinichi SATOH Masaki
出版者
公益社団法人 日本気象学会
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2022-046, (Released:2022-08-03)
被引用文献数
6

During the autumn rainy season, typhoons located far from Japan sometimes cause significant precipitation in Japan. In this study, we characterized remote precipitation events in September for 40 years from 1980 to 2019. We also analyzed cases in which remote precipitation did not occur despite approaching typhoons, as well as cases in which heavy precipitation was not affected by typhoons. We characterized the environmental fields of the remote precipitation cases by comparing them with these other two types of cases. Statistical analysis showed that remote precipitation tended to occur when the typhoons were located over the southern or southwestern oceans of mainland Japan and when the tracks of the typhoons were northward or changing to the northeast. The composite analysis of the remote precipitation cases showed that the subtropical high was retreating to the east for the two days before the remote precipitation. By contrast, the cases in which remote precipitation did not occur showed the opposite pattern: the subtropical high was strengthening to the west when typhoons were approaching over the southern or southwestern oceans of the Japanese archipelago. Furthermore, the remote precipitation occurred to the equatorward jet streak entrance of the 200 hPa jet, whereas the 200 hPa jet streak was shifted to the west in the cases where remote precipitation did not occur. The vertical cross-section of the northward water vapor flux showed that the northward water vapor inflow from the middle troposphere was larger in cases of remote precipitation than in cases in which heavy precipitation was not caused by typhoons. In addition, dynamical analysis showed that the area of remote precipitation corresponded to the region of 800-600 hPa mean quasi-geostrophic forcing for ascent and 925 hPa frontogenesis.
著者
YAMASHITA Yousuke TAKIGAWA Masayuki GOTO Daisuke YASHIRO Hisashi SATOH Masaki KANAYA Yugo TAKETANI Fumikazu MIYAKAWA Takuma
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2021-014, (Released:2020-12-02)
被引用文献数
3

Atmospheric transport of aerosols such as black carbon (BC) affects the absorption/scattering of solar radiation, precipitation, and snow/ice cover, especially in areas of low human activity such as the Arctic. The resolution dependency of simulated BC transport from Siberia to the Arctic, related to the well-developed low-pressure systems in September, was evaluated using the Nonhydrostatic Icosahedral Atmospheric Model–Spectral Radiation Transport Model for Aerosol Species (NICAM-SPRINTARS) with fine (∼ 56 km) and coarse (∼ 220 km) horizontal resolutions. These low-pressure systems have a large horizontal scale (∼ 2000 km) with the well-developed central pressure located on the transport pathway from East Asia to the Arctic through Siberia. The events analysis of the most developed low-pressure system in recent years indicated that the high-BC area in the Bering Sea observed by the Japanese Research Vessel Mirai in September 26-27th, 2016 moved to the Arctic with a filamental structure from the low's center to the behind of the cold front and ahead of the warm front in relation to its ascending motion on September 27-28th, 2016. The composite analysis for the developed low-pressure events in September from 2015-2018 indicated that the high-BC area was located eastwards of the low's center in relation to the ascending motion over the low's center and northward/eastward area. Since the area of the maximum ascending motion has a small horizontal scale, this was not well simulated by the 220-km experiment. The study identified the transport of BC to the Arctic in September is enhanced by the well-developed low-pressure systems. The results of transport model indicate that the material transport processes to the Arctic by the well-developed low-pressure systems are enhanced in the fine horizontal resolution (∼ 56 km) models relative to the coarse horizontal resolution (∼ 220 km) models.
著者
NAKAMURA Yuhi MIYAKAWA Tomoki SATOH Masaki
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2020-046, (Released:2020-06-02)

From 9 to 11 September 2015, the Kanto and Tohoku regions of Japan experienced an extremely heavy rainfall event. The synoptic-scale field was characterized by two typhoons, Etau (T1518) and Kilo (T1517). After Etau made landfall in the Tokai region and transformed into an extra-tropical cyclone over the Sea of Japan, meridionally oriented rain bands persisted over the Kanto region for about 12 hours and caused heavy rainfall, particularly over the Tochigi prefecture. During this time, Kilo approached the eastern ocean of the Kanto region. In this study, we examine the role of Kilo in this event by conducting numerical experiments using a stretched version of the Nonhydrostatic Icosahedral Atmospheric Model configured with a minimum grid interval of about 5.6 km. The control experiment reproduced intense rain bands around the same period and place as the observed event, although they were not reproduced in an experiment with a longer lead time. Sensitivity experiments were conducted in which Kilo was weakened by removing moisture in its central region with a longer lead time. In contrast to the expectation that reduced moisture would lead to a weaker typhoon and hence weaker rain, the sensitivity experiment reproduced the rain band with realistic location but 5 % less precipitation than the control experiment. Furthermore, this experiment indicated that precipitation over the outer band of Etau, which covers the Kanto region, increased by 10 % compared to the control experiment. We found that a southeasterly wind induced by a high-pressure ridge between Kilo and the Kanto region played a greater role in supplying moisture to the Kanto region than the strong easterly wind produced by the pressure gradient between Kilo and the Okhotsk high. In this case, weaker Kilo resulted in enhanced northwestward moisture flux associated with the ridge, thereby inducing heavier rainfall over the Kanto region.
著者
JINNO Takuya MIYAKAWA Tomoki SATOH Masaki
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2019-017, (Released:2018-12-07)
被引用文献数
3

In August 2016, a monsoon gyre persisted over the western North Pacific and was associated with the genesis of multiple devastating tropical cyclones. A series of hindcast simulations was performed using the nonhydrostatic icosahedral atmospheric model (NICAM) to reproduce the temporal evolution of this monsoon gyre. The simulations initiated at dates during the mature stage of the monsoon gyre successfully reproduced its termination and the subsequent intensification of the Bonin high, while the simulations initiated before the formation and during the developing stage of the gyre failed to reproduce subsequent gyre evolution even at a short lead time. These experiments further suggest a possibility that the development of the Bonin high is related to the termination of the monsoon gyre. High predictability of the termination is likely due to the predictable mid-latitudinal signals that intensify the Bonin high.
著者
ISLAM Md. Rezuanul SATOH Masaki TAKAGI Hiroshi
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2022-024, (Released:2022-02-03)
被引用文献数
6

This study investigated tidal records and landfall tropical cyclone (TC) best tracks from 1980 to 2019 to determine changes in storm surge heights in coastal regions of Central Japan, including Tokyo. The results indicate that annual mean storm surge heights have increased in the last 20 years (2000-2019) compared to those in 1980-1999, and that these changes are noteworthy, particularly in Tokyo Bay. TC wind intensity and size during landfall time frame have become stronger and larger, respectively, corresponding to increasing storm surge magnitudes from 1980 to 2019. The increased occurrence frequency of TCs with more northeastward tracks is another factor that may have contributed to the increased surge hazards around Tokyo. Additionally, a positive correlation between surge heights and a hazard index supports these statistical findings. Japan central coast will likely experience increasing numbers of extreme storm surge events in the future, if, the current increasing tendency continues.
著者
OHNO Tomoki NODA Akira T. SATOH Masaki
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2020-054, (Released:2020-07-20)
被引用文献数
7

The impacts of the saturation adjustment type approach to sub-grid-scale (SGS) ice clouds in a turbulent closure scheme on the high clouds and their response to global warming were investigated based on the radiative–convective equilibrium experiments (RCEs). This was motivated by the fact that the time scale of ice condensation is several orders of magnitude longer than that for liquid water. The RCEs were conducted with uniform sea surface temperatures over the spherical domain for the Earth's radius without rotation using an explicit cloud microphysics and a non-hydrostatic icosahedral atmospheric model. This study revealed that suppressing the phase change effect associated with the SGS ice condensation on the buoyancy of the SGS turbulence could cause approximately a 20 % reduction of the total high cloud covers and a significantly different response of high cloud amounts to global warming due to the change in static stability near high clouds, which leads to weaker vertical heat transport at a sub-grid scale there. Since the typical value of the time scale of the ice-phase cloud is much longer than that for liquid water and the ice supersaturation is in general, using the saturation adjustment type approach for SGS ice clouds could lead to an overestimation of the effect of ice condensation for the turbulent mixing and model biases in simulations with both cloud resolving models and general circulation models. The present result underlines the critical nature of the treatment of SGS ice clouds in turbulence schemes which reflects a realistic ice condensation time scale not only for a better representation of high clouds in the current climate but for an improved projection of changes of high clouds due to global warming.
著者
ROH Woosub SATOH Masaki HOHENEGGER Cathy
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2021-070, (Released:2021-08-24)
被引用文献数
12

We intercompared the cloud properties of the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains (DYAMOND) simulation output over the Atlantic Ocean. The domain averaged outgoing long-wave radiation (OLR) is relatively similar across the models, but the net shortwave radiation at the top of the atmosphere (NSR) shows large differences among the models. The models capture the triple modes of cloud systems corresponding to shallow, congestus, and high clouds, even though their partition in these three categories is strongly model dependent.The simulated height of the shallow and congestus peaks is more robust than the peak of high clouds, whereas cloud water content exhibits larger intermodel differences than cloud ice.  Furthermore, we investigated the resolution dependency of the vertical profiles of clouds for NICAM (Nonhydrostatic ICosahedral Atmospheric Model), ICON (Icosahedral Nonhydrostatic), and IFS (Integrated Forecasting System). We found that the averaged mixing ratio of ice clouds consistently increased with finer grid spacing. Such a consistent signal is not apparent for the mixing ratio of liquid clouds for shallow and congestus clouds. The impact of the grid spacing on OLR is smaller than on NSR and also much smaller than the intermodel differences.
著者
ROH Woosub SATOH Masaki
出版者
(公社)日本気象学会
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2018-002, (Released:2017-09-29)
被引用文献数
10

As an alternative approach to the previous multisensor satellite evaluation method of cloud system resolving models, a method is presented using combined infrared and microwave channels for precipitation clouds in cloud system resolving models over the ocean. This method determines characteristics of cloud-top temperatures and ice scatterings for clouds using infrared 11-μm and microwave high frequencies (89.0 GHz) brightness temperatures (TBs). The threshold of the TB at low frequencies (18.7 GHz) is also used to identify precipitation regions. This method extends the previous approach via the wider swath of the passive microwave sensor and sensitivities to ice clouds compared to the previous Tropical Rainfall Measuring Mission (TRMM)-based analysis method using the narrower coverage of the Precipitation Radar. The numerical results of the non-hydrostatic icosahedral atmospheric model (NICAM) with two cloud microphysics schemes are evaluated over the tropical open ocean using this method. The intensities of the scatterings in the two simulations at 89.0 GHz are different due to the parameterizations of the snow and graupel size distributions. A bimodal size distribution of the snow improved the underestimation of the TBs at 89.0 GHz. These results have a similar structure to the joint histograms of cloud-top temperatures and precipitation-top heights in the previous method: the overestimated intensity of scattering and the frequencies of high precipitation-top heights above 12 km in the control experiment. We find that the change in the snow size distribution in the cloud microphysics scheme can lead to better agreements of simulated TBs at 89.0 GHz with observations. We further investigate impacts of non-spherical assumptions for snow using a satellite simulator. The effect of a non-spherical shape of snow in the radiative transfer model causes a smaller change of TBs at 89.0 GHz compared to the difference between the TBs of the two simulations without non-spherical assumptions.
著者
NAKANO Masuo CHEN Ying-Wen SATOH Masaki
出版者
公益社団法人 日本気象学会
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2023-013, (Released:2023-02-24)

Typhoon Krosa (2019) formed in the eastern part of the Philippine Sea and ∼ 1400 km east of another typhoon Lekima on 6 August and made landfall in the western part of Japan's mainland on 15 August. The operational global model forecasts, which were initialized just after Krosa's formation, showed a very large uncertainty and totally failed to predict the actual track of Krosa. In this study, we investigated the causes of this large uncertainty through 101-member ensemble forecast experiments by using a 28-km mesh global nonhydrostatic model. The experiments initialized at 1200 UTC 6 August, showed a large uncertainty. An ensemble-based lagged correlation analysis indicated that the western North Pacific Subtropical High (WNPSH) retreated further east in the members with large track forecast errors than in the members with small errors. For the members with a large track forecast error for Krosa, Krosa and Lekima approached each other by 250 km and Krosa moved northward faster than the observation in 36 hours from the initialization time. For the members with a small track forecast error for Krosa, two typhoons approached each other by only 50 km, and the northward moving speed was comparable with that of the observation. The typhoon-center relative composite analysis exhibited that at the initialization time, the members with a large Krosa track forecast error had a larger horizontal size of Krosa and the difference in Krosa's size was kept during the forecast period. This difference in size led to a stronger interaction between the two typhoons and retreatment of the WNPSH, thus resulting in a fast northward moving speed for the members with a large Krosa track error.
著者
SHIBUYA Ryosuke NAKANO Masuo KODAMA Chihiro NASUNO Tomoe KIKUCHI Kazuyoshi SATOH Masaki MIURA Hiroaki MIYAKAWA Tomoki
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2021-046, (Released:2021-04-08)
被引用文献数
5

In this study, we assessed the prediction skill of the Boreal Summer Intra-Seasonal Oscillation (BSISO) mode of one-month simulations using a global non-hydrostatic atmospheric model (NICAM) with explicit cloud microphysics and with a grid spacing of 14 km. The simulations were run as a series of hindcast experiments every day of August during 2000-2014; a total of 465 simulations were run with a 13950-day integration. On using forecast skill scores for statistical measurements, it was found that the model showed an overall BSISO prediction skill of approximately 24 days. The prediction skill tended to be slightly higher (∼ 2 days) when BSISO events began in the initial phases 7 to 1, which corresponded to the re-initiation phase of the BSISO, where a major convective center over the Philippine Sea decayed and a new convective envelope began aggregating over the western Indian Ocean. The phase speed and the evolution of the amplitude of the BSISO were well simulated by the model with a clear northwestward-southeastward tilted outgoing longwave radiation (OLR) structure over the Maritime continent and the western Pacific. However, the propagation speed was slower during phases 6-7, and the amplitude of the BSISO largely decayed during phases 8-1, which was likely to have been associated with the stagnant behavior of the convective cells over the Philippines. This stagnation of the propagation over the Philippines may be largely attributed to the small background southerlies bias in the model over the Philippines based on regression coefficient analysis using the moist static energy. The bias in the large-scale circulation was likely to have been associated with the bias in the moisture field and the associated background monsoonal circulation. We concluded that the model physics controlling the background fields are important factors for improving the BSISO prediction skill.
著者
INOUE Toshiro RAJENDRAN Kavirajan SATOH Masaki MIURA Hiroaki
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2021-066, (Released:2021-07-02)
被引用文献数
4

The dual peak semidiurnal variation in surface rainfall rate over the tropics, simulated by a 3.5-km mesh Non-hydrostatic Icosahedral Atmospheric Model (NICAM) for 26-31 December 2006, is analyzed and compared with data from the 17-year winter precipitation climatology of Tropical Rainfall Measuring Mission (TRMM) TMI (TRMM Microwave Imager), Precipitation Radar (PR), and the same 6-day data of Global Satellite Mapping of Precipitation, as well as infrared data from geostationary satellites. We focus on land areas including southern Africa and the Amazon. Over these land areas, the NICAM simulation captures the primary peak in the afternoon and the secondary peak in the early morning, at similar times to those captured by TRMM data. In the PR observation, the primary peak of rainfall is mainly due to convective rain, whereas the secondary peak is due to stratiform rain. In the NICAM simulation, if a simple method is used for classification of convective/stratiform rain, convective rain is dominant all day long and the rainfall rate is generally higher than in the PR observation. However, an analysis of deep convection (DC) areas indicates consistency between the observation and NICAM; the primary peak of rainfall rate occurs at the mature stage of the number of DC areas, while the secondary peak occurs when the mean size of DC areas is almost at its highest point. In the NICAM simulation, however, the relative magnitudes of the two peaks are not represented well, and the contribution of the stratiform rain is underestimated.  The present study indicates that a high-resolution global nonhydrostatic model like NICAM has the potential to overcome the limitations of coarse-resolution general circulation models by reproducing evolution of deep convection, though there is room for improvement.