- 著者
-
Yusuke Sato
Yuki Suzuki
- 出版者
- The Biophysical Society of Japan
- 雑誌
- Biophysics and Physicobiology (ISSN:21894779)
- 巻号頁・発行日
- vol.18, pp.116-126, 2021 (Released:2021-05-26)
- 参考文献数
- 80
- 被引用文献数
-
2
Self-assembled supramolecular structures in living cells and their dynamics underlie various cellular events, such as endocytosis, cell migration, intracellular transport, cell metabolism, and gene expression. Spatiotemporally regulated association/dissociation and generation/degradation of assembly components is one of the remarkable features of biological systems. The significant advancement in DNA nanotechnology over the last few decades has enabled the construction of various-shaped nanostructures via programmed self-assembly of sequence-designed oligonucleotides. These nanostructures can further be assembled into micrometer-sized structures, including ordered lattices, tubular structures, macromolecular droplets, and hydrogels. In addition to being a structural material, DNA is adopted to construct artificial molecular circuits capable of activating/inactivating or producing/decomposing target DNA molecules based on strand displacement or enzymatic reactions. In this review, we provide an overview of recent studies on artificially designed DNA-based self-assembled systems that exhibit dynamic features, such as association/dissociation of components, phase separation, stimulus responsivity, and DNA circuit-regulated structural formation. These biomacromolecule-based, bottom-up approaches for the construction of artificial molecular systems will not only throw light on bio-inspired nano/micro engineering, but also enable us to gain insights into how autonomy and adaptability of living systems can be realized.