著者
樋田 勉
出版者
獨協大学情報学研究所
雑誌
情報学研究 = Journal of informatics (ISSN:21867666)
巻号頁・発行日
vol.5, pp.20-31, 2016-02

POS(point of sales)データには日次あるいは週次や月次のJANコード単位の販売数量と販売額が記録されており,特売の実施に関tる情報は含まれていない。このため, POSデータを用いて価格や物価の分析を行う際, POSデータに記録された取引価格から,特売価格の判定が必要になることがある。本稿では,カップ麺の日次POSデータを用いて,先行文献で利用されている複数の特売価格の判定法を比較した。また,単位価格を計算する集計頻度と特売靴定の関係にっいても検討した。主な結果は以下の通りである。(1)特売頻度,特売の長さ,値群き率,特売に於ける販売額シェアは,特売の判定方法に依存tる。(2)同じ特売判定法を用いても,日次単位価格と月次単位価格を利用する揚合とでは,特売頻度等の計算結果は大きく異なる。これは,単位価格を計算する時間単位が長くなると,日々の価格変動が均され,特売による変動を正確に識別することが難しくなるためと考えられる。従って,特売を識別するためには,日玖データのように単位価格を計算する時間単位が短いデータを用いることが望ましい。これらの結果は,POSデータを用いて異なる製品の特売状況について分析するためには,同じ特売判定法と同じ単位価格の集計期問を用いることが望ましいことを示唆している。Algorithms based on transaction price and quantity data are required to identify sales in scanner data because such data does not contain any sales information. This study uses daily scanner data for instant noodles in more than 300 supermarkets in Japan to compare the various approaches proposed by previous studies to identify sales. In addition, it examines the effect of time aggregation (daily, weekly, monthly, etc. ) on identifying sales through these approaches. The findings of this study are as follows. First, the frequency of sales, the duration of sales, the markdown rate on sales, and the percentage of the value of sales remarkably differ. depending on the approach used to identify sales. Second, using highly time aggregated price data to identify sales leads to quite differ. ent results compared with using daily price data. In highly time aggregated data, daily price fluctuations are smoothed, which makes it more difficult to identify sales. Therefore, lower aggregate data should be utilized to identify sales. These results suggest that sales in scanner data must be identified using the same approach and the same level of time aggregation when comparing the frequency of sales for different products.