著者
Tomo-o Watsuji Kaori Motoki Emi Hada Yukiko Nagai Yoshihiro Takaki Asami Yamamoto Kenji Ueda Takashi Toyofuku Hiroyuki Yamamoto Ken Takai
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.33, no.4, pp.348-356, 2018 (Released:2018-12-28)
参考文献数
46
被引用文献数
2 8

The hydrothermal vent squat lobster Shinkaia crosnieri Baba & Williams harbors an epibiotic bacterial community, which is numerically and functionally dominated by methanotrophs affiliated with Methylococcaceae and thioautotrophs affiliated with Sulfurovum and Thiotrichaceae. In the present study, shifts in the phylogenetic composition and metabolic function of the epibiont community were investigated using S. crosnieri individuals, which were reared for one year in a tank fed with methane as the energy and carbon source. The results obtained indicated that indigenous predominant thioautotrophic populations, such as Sulfurovum and Thiotrichaceae members, became absent, possibly due to the lack of an energy source, and epibiotic communities were dominated by indigenous Methylococcaceae and betaproteobacterial methylotrophic members that adapted to the conditions present during rearing for 12 months with a supply of methane. Furthermore, the overall phylogenetic composition of the epibiotic community markedly changed from a composition dominated by chemolithotrophs to one enriched with cross-feeding heterotrophs in addition to methanotrophs and methylotrophs. Thus, the composition and function of the S. crosnieri epibiotic bacterial community were strongly affected by the balance between the energy and carbon sources supplied for chemosynthetic production as well as that between the production and consumption of organic compounds.
著者
斎藤 雅典
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.14, no.3, pp.179-184, 1999-09-30 (Released:2009-10-05)
参考文献数
26
被引用文献数
1

Vesicular-arbuscular (VA) mycorrhizal fungi belonging to order Glomales, Zygomycetes, are obligately associated with plant roots. To culture the fungi, we have to establish the symbiosis by growing host plants inoculated with the fungi. Many trials have been done to culture the fungi asymbiotically, but none have succeeded to date. The fungi can grow asymbiotically from spores or intraradical hyphae for some periods, but do not complete their life cycle; spore are not reproduced under asymbiotic conditions. Possible reasons for the failure in asymbiotic proliferation were discussed. We are not able to exclude the possibility that we have not yet obtained all the compounds essential to the asymbiotic growth, but this possibility is low. During the symbiotic growth phase of the fungi, functional differentiation may occur in the intraradical and extraradical hyphae. This may be one of the keys to solving the problem.
著者
Yu Takahashi Kento Ishii Yukie Kikkawa Kayo Horikiri Satoshi Tsuneda
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.37, no.4, pp.ME22040, 2022 (Released:2022-10-05)
参考文献数
24

In contrast to pathogens, the effects of environmental microbes on the water quality in baths have not yet been examined in detail. We herein focused on a public bath in which groundwater was pumped up as bath water and disinfected by chlorination. Ammonia in groundwater is oxidized to nitrite, thereby reducing residual chlorine. A batch-culture test and bacterial community ana­lysis revealed that ammonia-oxidizing bacteria accumulated nitrite and had higher resistance to chlorination than nitrite-oxidizing bacteria. These results demonstrate that the difference in resistance to chlorination between ammonia-oxidizing and nitrite-oxidizing bacteria may lead to the accumulation of nitrite in baths using groundwater.
著者
Mamoru Oshiki Yoshihiro Takaki Miho Hirai Takuro Nunoura Atsushi Kamigaito Satoshi Okabe
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.37, no.3, pp.ME22017, 2022 (Released:2022-07-09)
参考文献数
57
被引用文献数
5

Anaerobic ammonium-oxidizing (anammox) bacteria are slow-growing and fastidious bacteria, and limited numbers of enrichment cultures have been established. A metagenomic ana­lysis of our 5 established anammox bacterial enrichment cultures was performed in the present study. Fourteen high-quality metagenome-assembled genomes (MAGs) were obtained, including those of 5 anammox Planctomycetota (Candidatus Brocadia, Ca. Kuenenia, Ca. Jettenia, and Ca. Scalindua), 4 Bacteroidota, and 3 Chloroflexota. Based on the gene sets of metabolic pathways involved in the degradation of polymeric substances found in Chloroflexota and Bacteroidota MAGs, they are expected to be scavengers of extracellular polymeric substances and cell debris.
著者
Shin-ichiro Agake Fernanda Plucani do Amaral Tetsuya Yamada Hitoshi Sekimoto Gary Stacey Tadashi Yokoyama Naoko Ohkama-Ohtsu
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.37, no.1, pp.ME21060, 2022 (Released:2022-01-27)
参考文献数
61
被引用文献数
3

Spores are a stress-resistant form of Bacillus spp., which include species that are plant growth-promoting rhizobacteria (PGPR). Previous studies showed that the inoculation of plants with vegetative cells or spores exerted different plant growth-promoting effects. To elucidate the spore-specific mechanism, we compared the effects of viable vegetative cells, autoclaved dead spores, and viable spores of Bacillus pumilus TUAT1 inoculated at 107 CFU plant–1 on the growth of the C4 model plant, Setaria viridis A10.1. B. pumilus TUAT1 spores exerted stronger growth-promoting effects on Setaria than on control plants 14 days after the inoculation. Viable spores increased shoot weight, root weight, shoot length, root length, and nitrogen uptake efficiency 21 days after the inoculation. These increases involved primary and crown root formation. Additionally, autoclaved dead spores inoculated at 108 or 109 CFU plant–1 had a positive impact on crown root differentiation, which increased total lateral root length, resulting in a greater biomass and more efficient nitrogen uptake. The present results indicate that an inoculation with viable spores of B. pumilus TUAT1 is more effective at enhancing the growth of Setaria than that with vegetative cells. The plant response to dead spores suggests that the spore-specific plant growth-promoting mechanism is at least partly independent of symbiotic colonization.
著者
Junya Hirai Syun-ichi Urayama Yoshiro Takaki Miho Hirai Keizo Nagasaki Takuro Nunoura
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.37, no.5, pp.ME21066, 2022 (Released:2022-01-01)
参考文献数
61
被引用文献数
2

Zooplankton and viruses play a key role in marine ecosystems; however, their interactions have not been examined in detail. In the present study, the diversity of viruses associated with zooplankton collected using a plankton net (mesh size: 100‍ ‍μm) in the subtropical western North Pacific was investigated by fragmented and primer ligated dsRNA sequencing. We obtained 21 and 168 operational taxonomic units (OTUs) of ssRNA and dsRNA viruses, respectively, containing RNA-dependent RNA polymerase (RdRp). These OTUs presented average amino acid similarities of 43.5 and 44.0% to the RdRp genes of known viruses in ssRNA viruses and dsRNA viruses, respectively. Dominant OTUs mainly belonged to narna-like and picorna-like ssRNA viruses and chryso-like, partiti-like, picobirna-like, reo-like, and toti-like dsRNA viruses. Phylogenetic ana­lyses of the RdRp gene revealed that OTUs were phylogenetically diverse and clustered into distinct clades from known viral groups. The community structure of the same zooplankton sample was investigated using small subunit (SSU) rRNA sequences assembled from the metatranscriptome of single-stranded RNA. More than 90% of the sequence reads were derived from metazoan zooplankton; copepods comprised approximately 70% of the sequence reads. Although this ana­lysis provided no direct evidence of the host species of RNA viruses, these dominant zooplankton are expected to be associated with the RNA viruses detected in the present study. The present results indicate that zooplankton function as a reservoir of diverse RNA viruses and suggest that investigations of zooplankton viruses will provide a more detailed understanding of the role of viruses in marine ecosystems.
著者
Katsuhiro Asamatsu Kai Yoshitake Makoto Saito Wipoo Prasitwuttisak Jun-ichiro Ishibashi Akihi Tsutsumi Nurul Asyifah Mustapha Toshinari Maeda Katsunori Yanagawa
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.36, no.4, pp.ME21048, 2021 (Released:2021-11-25)
参考文献数
71
被引用文献数
1

A novel deep-branching archaeal lineage was discovered at high-temperature hot springs around Oyasukyo Gorge in Akita Prefecture, Japan. Actively boiling hot spring water contained >1×104 microbes mL–1. The microbial community composition assessed by analyzing 16S rRNA gene amplicons revealed that the dominant bacterial phyla were Proteobacteria and Aquificae (>50% of the microbial composition) in samples collected in 2016 and 2019, respectively. Approximately 10% of the reads obtained in both years were not assigned to any taxonomy. The more detailed phylogenetic positions of the unassigned sequences identified using a clone library and phylogenetic tree showed that they formed a clade that was independent, distantly related to known phyla, and had low similarity (<82%) to all other sequences in available databases. The present results suggest that this novel archaeal phylum-level lineage thrives in boiling hot springs in Japan.
著者
長崎 慶三
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.13, no.2, pp.109-113, 1998-06-30 (Released:2009-10-05)
参考文献数
13
被引用文献数
3 3

To develop a practical countermeasure for eliminating harmful algal blooms (HABs), microbiological algicidity has recently been highlighted. In 1996, a virus (HaV) specifically infectious to a representative harmful bloom causing microalga, Heterosigma akashiwo, was isolated from the natural seawater. The virus has at least 4 characteristics required for biological agents to prevent H. akashiwo blooms in the natural environment: (1) HaV was isolated from “natural seawater” and experienced no artificial operation for its DNA, (2) HaV attacks H. akashiwo quite specifically, (3) HaV reproduces itself only by infecting to the host, H. akashiwo, (4) production of a small amount of HaV at a moderate price has been succeeded.
著者
Md Mehedi Iqbal Masahiko Nishimura Md. Nurul Haider Masayoshi Sano Minoru Ijichi Kazuhiro Kogure Susumu Yoshizawa
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.36, no.4, pp.ME21037, 2021 (Released:2021-10-13)
参考文献数
81
被引用文献数
7

Zostera marina (eelgrass) is a widespread seagrass species that forms diverse and productive habitats along coast lines throughout much of the northern hemisphere. The present study investigated the microbial consortia of Z. marina growing at Futtsu clam-digging beach, Chiba prefecture, Japan. The following environmental samples were collected: sediment, seawater, plant leaves, and the root-rhizome. Sediment and seawater samples were obtained from three sampling points: inside, outside, and at the marginal point of the eelgrass bed. The microbial composition of each sample was analyzed using 16S ribosomal gene amplicon sequencing. Microbial communities on the dead (withered) leaf surface markedly differed from those in sediment, but were similar to those in seawater. Eelgrass leaves and surrounding seawater were dominated by the bacterial taxa Rhodobacterales (Alphaproteobacteria), whereas Rhodobacterales were a minor group in eelgrass sediment. Additionally, we speculated that the order Sphingomonadales (Alphaproteobacteria) acts as a major degrader during the decomposition process and constantly degrades eelgrass leaves, which then spread into the surrounding seawater. Withered eelgrass leaves did not accumulate on the surface sediment because they were transported out of the eelgrass bed by wind and residual currents unique to the central part of Tokyo Bay.
著者
Fumiaki Mori Tomoya Nishimura Taisuke Wakamatsu Takeshi Terada Yuki Morono
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.36, no.3, pp.ME21031, 2021 (Released:2021-08-24)
参考文献数
22
被引用文献数
3

Microbial cell counting provides essential information for the study of cell abundance profiles and biogeochemical interactions with the surrounding environments. However, it often requires labor-intensive and time-consuming processes, particularly for subseafloor sediment samples, in which non-cell particles are abundant. We developed a rapid and straightforward method for staining microbial intracellular DNA by SYBR Green I (SYBR-I) to enumerate cells by flow cytometry (FCM). We initially examined the efficiency of microbial cell staining at various dye/sediment ratios (volume ratio of SYBR-I/sediment [vSYBR/vSed]). Non-cell particles in sediment strongly and preferentially adsorbed SYBR-I dye, resulting in the unsuccessful staining of microbial cells when an insufficient ratio (<1.63 vSYBR/vSed) of SYBR-I dye was present per volume of sediment. SYBR-I dye at an abundance of 10 vSYBR/vSed successfully and stably stained microbial cells in green fluorescence, while the fluorescent color of non-cell particles red-shifted to yellow-orange with the overaccumulation of SYBR-I dye. A low vSYBR/vSed ratio was quickly recognized by a colorless supernatant after centrifugation. At the appropriate vSYBR/vSed ratio, FCM-measured cell concentrations in subseafloor sediments were consistently similar to microscopy counts (>106 cells cm–3). Samples with low cell abundance (<105 cells cm–3) still require cell separation. This modified staining allows us to efficiently process and perform the microbial cell counting of sediment samples to a depth of a few hundred meters below the seafloor with a higher throughput and capability to scale up than procedures employing microscopy-based observations.
著者
Arisa Nishihara Katsumi Matsuura Marcus Tank Shawn E. McGlynn Vera Thiel Shin Haruta
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.33, no.4, pp.394-401, 2018 (Released:2018-12-28)
参考文献数
48
被引用文献数
7 21

The phylum Aquificae comprises chemolithoautotrophic thermophilic to hyperthermophilic bacteria, in which the nitrogenase reductase gene (nifH) has been reported. However, nitrogen-fixing activity has not yet been demonstrated in members of this deeply branching bacterial phylum. We isolated two thermophilic diazotrophic strains from chemosynthetic microbial communities in slightly alkaline hot springs (≥70°C) in Nakabusa, Nagano Prefecture, Japan. A phylogenetic analysis based on 16S rRNA genes identified these strains as members of the genus Hydrogenobacter within Aquificae. Their NifH sequences showed 96.5 and 97.4% amino acid sequence identities to that from Hydrogenobacter thermophilus TK-6. Nitrogenase activity, measured by acetylene reduction, was confirmed in both strains at 70°C. These novel strains grew under semi-aerobic conditions by using CO2 as the sole carbon source and N2 as the sole nitrogen source in media containing hydrogen and/or thiosulfate. To the best of our knowledge, this is the first demonstration of active nitrogen fixation in thermophilic bacteria at 70°C and in the phylum Aquificae.
著者
Shashini U Welmillage Qian Zhang Virinchipuram S Sreevidya Michael J Sadowsky Prasad Gyaneshwar
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.36, no.1, pp.ME20153, 2021 (Released:2021-03-12)
参考文献数
51
被引用文献数
5

Nitrogen fixing symbiosis between rhizobia and legumes contributes significant amounts of N to agricultural and natural environments. In natural soils, rhizobia compete with indigenous bacterial communities to colonize legume roots, which leads to symbiotic interactions. However, limited information is currently available on the effects of the rhizobial symbiont on the resident microbial community in the legume rhizosphere, rhizoplane, and endosphere, which is partly due to the presence of native nodulating rhizobial strains. In the present study, we used a symbiotic system comprised of Paraburkholderia phymatum and Mimosa pudica to examine the interaction of an inoculant strain with indigenous soil bacteria. The effects of a symbiont inoculation on the native bacterial community was investigated using high throughput sequencing and an analysis of 16S rRNA gene amplicons. The results obtained revealed that the inoculation induced significant alterations in the microbial community present in the rhizoplane+endosphere of the roots, with 13 different taxa showing significant changes in abundance. No significant changes were observed in the rhizospheric soil. The relative abundance of P. phymatum significantly increased in the rhizoplane+endosphere of the root, but significant decreased in the rhizospheric soil. While the rhizosphere, rhizoplane, and root endosphere contained a wide diversity of bacteria, the nodules were predominantly colonized by P. phymatum. A network analysis revealed that the operational taxonomic units of Streptomyces and Phycicoccus were positively associated with P. phymatum as potential keystone taxa. Collectively, these results suggest that the success of an inoculated symbiont depends on its ability to colonize the roots in the face of competition by other soil bacteria. A more detailed understanding of the mechanisms by which an inoculated strain colonizes its plant host is crucial for realizing the full potential of microbial inoculants in sustainable agriculture.
著者
Lucia Gastoldi Lewis M. Ward Mayuko Nakagawa Mario Giordano Shawn E. McGlynn
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.36, no.2, pp.ME20145, 2021 (Released:2021-05-25)
参考文献数
62
被引用文献数
1

We investigated variations in cell growth and ATP Sulfurylase (ATPS) activity when two cyanobacterial strains—Synechocystis sp. PCC6803 and Synechococcus sp. WH7803—were grown in conventional media, and media with low ammonium, low sulfate and a high CO2/low O2 atmosphere. In both organisms, a transition and adaptation to the reconstructed environmental media resulted in a decrease in ATPS activity. This variation appears to be decoupled from growth rate, suggesting the enzyme is not rate-limiting in S assimilation and raising questions about the role of ATPS redox regulation in cell physiology and throughout Earth history.
著者
Tomoki Iwashita Yasuhiro Tanaka Hideyuki Tamaki Yasuko Yoneda Ayaka Makino Yuka Tateno Yan Li Tadashi Toyama Yoichi Kamagata Kazuhiro Mori
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.35, no.3, pp.ME20081, 2020 (Released:2020-07-17)
参考文献数
26
被引用文献数
15

The microbial communities inhabiting the fronds of duckweeds have not been investigated in as much detail as those on the roots. We herein examined the microbial communities in three duckweed species using 16S rRNA amplicon sequencing and compared them to those on the roots. The microbial compositions of the fronds were distinct from those of the roots in the three species. Various types of taxonomic bacteria, including rarely cultivated phyla, Acidobacteria, Armatimonadetes, and Verrucomicrobia, were also isolated from the fronds, but at a slightly lower abundance than those from the roots. These results suggest that duckweed fronds are an alternative source for isolating rare and novel microbes, which may otherwise be recalcitrant to cultivation using conventional strategies.
著者
Kazaha Izaki Shin Haruta
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.35, no.2, pp.ME20015, 2020 (Released:2020-05-15)
参考文献数
55
被引用文献数
2

Filamentous anoxygenic photosynthetic bacteria grow by photosynthesis and aerobic respiration. The present study investigated the effects of light and O2 on bacteriochlorophyll contents and the transcription levels of photosynthesis-related genes in Chloroflexus aurantiacus J-10-fl T. Under aerobic conditions, C. aurantiacus produced marked amounts of bacteriochlorophylls in the presence of light, although their production was strongly suppressed in the dark. The transcription levels of genes related to the synthesis of bacteriochlorophylls, photosystems, and chlorosomes: bchM, bchU, pufL, pufBA, and csmM, were markedly increased by illumination. These results suggest that C. aurantiacus continuously synthesizes ATP by photophosphorylation even in the presence of O2.
著者
Satoshi Hiraoka Ching-chia Yang Wataru Iwasaki
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.31, no.3, pp.204-212, 2016 (Released:2016-09-29)
参考文献数
185
被引用文献数
32 71

Metagenomic approaches are now commonly used in microbial ecology to study microbial communities in more detail, including many strains that cannot be cultivated in the laboratory. Bioinformatic analyses make it possible to mine huge metagenomic datasets and discover general patterns that govern microbial ecosystems. However, the findings of typical metagenomic and bioinformatic analyses still do not completely describe the ecology and evolution of microbes in their environments. Most analyses still depend on straightforward sequence similarity searches against reference databases. We herein review the current state of metagenomics and bioinformatics in microbial ecology and discuss future directions for the field. New techniques will allow us to go beyond routine analyses and broaden our knowledge of microbial ecosystems. We need to enrich reference databases, promote platforms that enable meta- or comprehensive analyses of diverse metagenomic datasets, devise methods that utilize long-read sequence information, and develop more powerful bioinformatic methods to analyze data from diverse perspectives.
著者
Yukari Iwasaki Tatsuya Ichino Akihiro Saito
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.35, no.1, pp.ME19070, 2020 (Released:2020-01-11)
参考文献数
46
被引用文献数
16

Chitin amendment is an agricultural management strategy for controlling soil-borne plant disease. We previously reported an exponential decrease in chitin added to incubated upland soil. We herein investigated the transition of the bacterial community structure in chitin-degrading soil samples over time and the characteristics of chitinolytic bacteria in order to elucidate changes in the chitinolytic bacterial community structure during chitin degradation. The addition of chitin to soil immediately increased the population of bacteria in the genus Streptomyces, which is the main decomposer of chitin in soil environments. Lysobacter, Pseudoxanthomonas, Cellulosimicrobium, Streptosporangium, and Nonomuraea populations increased over time with decreases in that of Streptomyces. We isolated 104 strains of chitinolytic bacteria, among which six strains were classified as Lysobacter, from chitin-treated soils. These results suggested the involvement of Lysobacter as well as Streptomyces as chitin decomposers in the degradation of chitin added to soil. Lysobacter isolates required yeast extract or casamino acid for significant growth on minimal agar medium supplemented with glucose. Further nutritional analyses demonstrated that the six chitinolytic Lysobacter isolates required methionine (Met) to grow, but not cysteine or homocysteine, indicating Met auxotrophy. Met auxotrophy was also observed in two of the five type strains of Lysobacter spp. tested, and these Met auxotrophs used d-Met as well as l-Met. The addition of Met to incubated upland soil increased the population of Lysobacter. Met may be a factor increasing the population of Lysobacter in chitin-treated upland soil.
著者
Hisashi Muto Junichi Miyazaki Shigeki Sawayama Ken Takai Satoshi Nakagawa
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.38, no.6, pp.ME23072, 2023 (Released:2023-12-16)
参考文献数
45

Strictly hydrogen- and sulfur-oxidizing chemolithoautotrophic bacteria, particularly members of the phyla Campylobacterota and Aquificota, have a cosmopolitan distribution in deep-sea hydrothermal fields. The successful cultivation of these microorganisms in liquid media has provided insights into their physiological, evolutionary, and ecological characteristics. Notably, recent population genetic studies on Sulfurimonas (Campylobacterota) and Persephonella (Aquificota) revealed geographic separation in their populations. Advances in this field of research are largely dependent on the availability of pure cultures, which demand labor-intensive liquid cultivation procedures, such as dilution-to-extinction, given the longstanding assumption that many strictly or facultatively anaerobic chemolithoautotrophs cannot easily form colonies on solid media. We herein describe a simple and cost-effective approach for cultivating these chemolithoautotrophs on solid media. The results obtained suggest that not only the choice of gelling agent, but also the gas phase composition significantly affect the colony-forming ratio of diverse laboratory strains. The use of gellan gum as a gelling agent combined with high concentrations of H2 and CO2 in a pouch bag promoted the formation of colonies. This contrasted with the absence of colony formation on an agar-solidified medium, in which thiosulfate served as an electron donor, nitrate as an electron acceptor, and bicarbonate as a carbon source, placed in anaerobic jars under an N2 atmosphere. Our method efficiently isolated chemolithoautotrophs from a deep-sea vent sample, underscoring its potential value in research requiring pure cultures of hydrogen- and sulfur-oxidizing chemolithoautotrophs.
著者
Hiroto Ide Kento Ishii Yu Takahashi Hirotsugu Fujitani Satoshi Tsuneda
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.38, no.4, pp.ME23076, 2023 (Released:2023-12-09)
参考文献数
20

Interactions between autotrophic nitrifiers and heterotrophs have attracted considerable attention in microbial ecology. However, the mechanisms by which heterotrophs affect the physiological activity of and nitrogen metabolism in autotrophic nitrite oxidizers remain unclear. We herein focused on nitrite-oxidizing Candidatus Nitrotoga and compared an axenic culture including only Ca. Nitrotoga with a co-culture of both Ca. Nitrotoga and Acidovorax in physiological experiments and transcriptomics. In the co-culture with Acidovorax, nitrite consumption by Ca. Nitrotoga was promoted, and some genes relevant to nitrogen metabolism in Ca. Nitrotoga were highly expressed. These results provide insights into the mechanisms by which co-existing heterotrophs affect autotrophic nitrifiers.
著者
Yuto Sato Tatsuki Akao Kazutaka Takeshita
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.38, no.3, pp.ME22110, 2023 (Released:2023-07-13)
参考文献数
32

The sorghum plant bug, Stenotus rubrovittatus (order Heteroptera: family Miridae), is a notorious insect pest in Japan that causes pecky rice. In the present study, we sampled this insect pest in the northern part of Honshu Island in Japan and investigated its associated microbiota. The results obtained showed that Pantoea dominated the associated microbiota and was the sole genus detected in all samples. The dominant Pantoea were phylogenetically close to rice pathogens. The present results suggest that the sorghum plant bug needs to be regarded and controlled not only as a notorious insect pest, but also as a potential vector of rice pathogenic Pantoea spp.