- 著者
-
相島 健助
松尾 宇泰
室田 一雄
杉原 正顕
- 出版者
- 一般社団法人日本応用数理学会
- 雑誌
- 日本応用数理学会論文誌 (ISSN:09172246)
- 巻号頁・発行日
- vol.17, no.2, pp.97-131, 2007-06-25
- 被引用文献数
-
3
Convergence theorems are established with mathematical rigour for two algorithms for the computation of singular values of bidiogonal matrices: the differential quotient difference with shift (dqds) and the modified discrete Lotka-Volterra with shift (mdLVs). Global convergence is guaranteed under a fairly general assumption on the shift, and the asymptotic rate of convergence is 1.5 for the Johnson bound shift. This result for the mdLVs algorithm is a substantial improvement of the convergence analysis by Iwasaki and Nakamura. Numerical examples support these theoretical results.