- 著者
-
磯崎 行雄
丸山 茂徳
青木 一勝
中間 隆晃
宮下 敦
大藤 茂
- 出版者
- 公益社団法人 東京地学協会
- 雑誌
- 地学雑誌 (ISSN:0022135X)
- 巻号頁・発行日
- vol.119, no.6, pp.999-1053, 2010-12-25 (Released:2011-03-17)
- 参考文献数
- 145
- 被引用文献数
-
26
74
The geotectonic subdivision and relevant definitions of geotectonic units in the Japanese Islands are revised on the basis of new data, particularly with detrital zircon dating of U-Pb ages and seismic profiling of the deep arc crust across the islands. In addition to the final confirmation of the subhorizontal structures of the Paleozoic to Cenozoic accretionary complexes and their high-P/T metamorphosed equivalents, several new aspects were recognized; i.e., detection of the eastern extension of the collisional suture between the Sino-Korean and Yangtze cratons in the Higo belt with medium-pressure-type metamorphism in SW Japan, and separation of the traditional Sanbagawa belt into two distinct metamorphic belts characterized by mutually different ages of protolith AC-formation and peak metamorphism. The occurrence and consumption of 4 Paleozoic to Mesozoic granite batholiths, as major provenances for the ancient Japanese Islands, are documented by detrital zircon dating of Paleozoic–Mesozoic sandstones. With respect to these new findings, the definitions of unit boundaries were thoroughly revised in terms of chronological spectrum in “ocean plate stratigraphy–metamorphism”. The geological significance of 5 major tectonic lines (faults) of the Pacific-type (or Miyashiro-type) orogen in Japan, i.e., the Nagato–Hida marginal TL, Osayama–Omi TL, Ishigaki–Kuga TL, Paleo–Median TL, and Butsuzo TL, is discussed. The current revision of the geotectonic subdivision and definitions of component units and their mutual boundaries leads to the following conclusions, which challenge the conventional understanding of the orogenic history of the Japanese Islands. (1) Proto-Japan in the Early Paleozoic was located closer to the South China (Yangtze) craton rather than the North China (Sino–Korean) craton. (2) Ever since 520 Ma, subduction of past Pacific ocean floors formed mature arc-trench systems with a full set of granite batholith, fore-arc basin, accretionary complex, and high-P/T metamorphosed equivalents at least 5 times; however, the former 4 sets were almost completely destroyed, with the exception of smaller tectonic blocks that currently occur within serpentinite mélange. (3) Tectonic erosion played a significant role in consuming ancient fore-arc crusts including 4 granite batholiths of the Paleozoic to mid-Mesozoic. (4) Serpentine mélange represents the former Wadati–Benioff plane along which tectonic erosion took place. (5) The Japanese Islands, which basically developed along the Yangtze continental margin, have experienced multiple episodes of oceanward growth and continentward retreat due to alternating subduction-accretion and tectonic erosion. (6) Net production of juvenile crust occurred on a large scale along the Japan margin during the 500 million year-long oceanic subduction regime since the Cambrian; however, intensive tectonic erosion effectively erased the older crusts from the surface and enriched the underlying sub-arc mantle with heat-generating continental material.