著者
磯崎 行雄 丸山 茂徳 青木 一勝 中間 隆晃 宮下 敦 大藤 茂
出版者
公益社団法人 東京地学協会
雑誌
地学雑誌 (ISSN:0022135X)
巻号頁・発行日
vol.119, no.6, pp.999-1053, 2010-12-25 (Released:2011-03-17)
参考文献数
145
被引用文献数
26 74

The geotectonic subdivision and relevant definitions of geotectonic units in the Japanese Islands are revised on the basis of new data, particularly with detrital zircon dating of U-Pb ages and seismic profiling of the deep arc crust across the islands. In addition to the final confirmation of the subhorizontal structures of the Paleozoic to Cenozoic accretionary complexes and their high-P/T metamorphosed equivalents, several new aspects were recognized; i.e., detection of the eastern extension of the collisional suture between the Sino-Korean and Yangtze cratons in the Higo belt with medium-pressure-type metamorphism in SW Japan, and separation of the traditional Sanbagawa belt into two distinct metamorphic belts characterized by mutually different ages of protolith AC-formation and peak metamorphism. The occurrence and consumption of 4 Paleozoic to Mesozoic granite batholiths, as major provenances for the ancient Japanese Islands, are documented by detrital zircon dating of Paleozoic–Mesozoic sandstones. With respect to these new findings, the definitions of unit boundaries were thoroughly revised in terms of chronological spectrum in “ocean plate stratigraphy–metamorphism”. The geological significance of 5 major tectonic lines (faults) of the Pacific-type (or Miyashiro-type) orogen in Japan, i.e., the Nagato–Hida marginal TL, Osayama–Omi TL, Ishigaki–Kuga TL, Paleo–Median TL, and Butsuzo TL, is discussed. The current revision of the geotectonic subdivision and definitions of component units and their mutual boundaries leads to the following conclusions, which challenge the conventional understanding of the orogenic history of the Japanese Islands. (1) Proto-Japan in the Early Paleozoic was located closer to the South China (Yangtze) craton rather than the North China (Sino–Korean) craton. (2) Ever since 520 Ma, subduction of past Pacific ocean floors formed mature arc-trench systems with a full set of granite batholith, fore-arc basin, accretionary complex, and high-P/T metamorphosed equivalents at least 5 times; however, the former 4 sets were almost completely destroyed, with the exception of smaller tectonic blocks that currently occur within serpentinite mélange. (3) Tectonic erosion played a significant role in consuming ancient fore-arc crusts including 4 granite batholiths of the Paleozoic to mid-Mesozoic. (4) Serpentine mélange represents the former Wadati–Benioff plane along which tectonic erosion took place. (5) The Japanese Islands, which basically developed along the Yangtze continental margin, have experienced multiple episodes of oceanward growth and continentward retreat due to alternating subduction-accretion and tectonic erosion. (6) Net production of juvenile crust occurred on a large scale along the Japan margin during the 500 million year-long oceanic subduction regime since the Cambrian; however, intensive tectonic erosion effectively erased the older crusts from the surface and enriched the underlying sub-arc mantle with heat-generating continental material.
著者
宮田 和周 中田 健太郎 柴田 正輝 長田 充弘 永野 裕二 大藤 茂 中山 健太朗 安里 開士 中谷 大輔 小平 将大
出版者
一般社団法人 日本地質学会
雑誌
地質学雑誌 (ISSN:00167630)
巻号頁・発行日
vol.129, no.1, pp.239-254, 2023-04-01 (Released:2023-03-31)
参考文献数
100

長崎半島東海岸に露出する上部白亜系“北浦層”を長崎北浦層と改定した.本層は下部の赤崎ノ鼻砂岩泥岩部層と上部の座頭浜礫質砂岩泥岩部層に二分でき,両部層は断層で接する.赤崎ノ鼻砂岩泥岩部層から産した2種のアンモナイト類(Polyptychoceras obataiとcf. Phylloceras sp.)と1種のイノセラムス類(Platyceramus japonicus),座頭浜礫質砂岩泥岩部層から産したハドロサウルス上科の鳥脚類恐竜の大腿骨化石を記載した.赤崎ノ鼻砂岩泥岩部層の軟体動物化石と砕屑性ジルコンのU-Pb年代から,長崎北浦層の時代は後期サントニアン期以降であり,おそらくカンパニアン期におよぶ.座頭浜礫質砂岩泥岩部層は岩相から長崎半島西海岸の三ツ瀬層の下部(中期カンパニアン期)に対比できる.長崎北浦層の層序は西九州の上部白亜系姫浦層群の下半部に関連すると考えられる.
著者
山北 聡 大藤 茂
出版者
一般社団法人 日本地質学会
雑誌
地質学雑誌 (ISSN:00167630)
巻号頁・発行日
vol.113, no.11, pp.585-590, 2007-11-15 (Released:2008-11-08)
参考文献数
24
被引用文献数
1 1

Folds in accretionary complexes, especially those in the Mino-Tanba Belt, are often called not “syncline” or “anticline” but “synform” or “antiform” evenly. However, this usage is not correct, since it cannot distinguish an inverted fold from a normal one. They are structurally quite different and distinguished from each other as a syformal anticline and a syncline or as an antiformal syncline and an anticline in normal sedimentary strata. “Synform” and “antiform” are terms for the folds that are out of this distinction; they should be used when the stratigraphic relationship or the facing is unknown. This terminology should be followed also in accretionary complexes, and “syncline” and “anticline” should be defined not with a chronological relationship between the strata in the core and the limbs, as in many glossaries and encyclopedias, but with a facing direction of the both limbs, namely, as a fold whose limbs are facing syn-axisward or anti-axisward, respectively.
著者
大藤 茂 佐々木 みぎわ
出版者
日本地質学会
雑誌
地質学論集 (ISSN:03858545)
巻号頁・発行日
no.50, pp.159-176, 1998-07-31
被引用文献数
12

岩質, 古生物地理および剪断帯の分布と運動像から, 東アジアの各地帯とオーストラリアとの中〜古生代の運動史を次の様に考えた。(1)カンブリア-オルドビス紀の各地帯は熱帯〜亜熱帯区に位置し, オルドビス紀には, 筆石の太平洋区と大西洋区とが識別される。(2)各地帯の上部オルドビス〜デボン系は, サンゴ礁の形成可能な熱帯地域にほぼ東西に配列する, 火山弧近辺の堆積物からなる。(3)上記火山弧列は, 後期デボン紀〜ペルム紀に時計回り回転し, オーストラリアは南極域へ, アンガラ剛塊は北半球の温帯域へ移動した。北中国地塊, 南中国地塊および日本は, 熱帯のカタイシア植物区にとどまった。(4)三畳紀には南北中国地塊の東部が衝突し, 朝鮮半島の臨津江ナップが形成された。(5)南中国地塊は北中国地塊と癒合した後, モンゴル-オホーツク海を消滅させつつ北上し, 前期白亜紀までにはアンガラ剛塊と衝突した。上記の運動の中での, 日本の位置づけも議論した。
著者
青木 一勝 大藤 茂 柳井 修一 丸山 茂徳
出版者
公益社団法人 東京地学協会
雑誌
地学雑誌 (ISSN:0022135X)
巻号頁・発行日
vol.119, no.2, pp.313-332, 2010-04-25 (Released:2010-07-06)
参考文献数
88
被引用文献数
15 24

The Sanbagawa metamorphic belt in SW Japan was previously considered to extend in the E-W direction from the Kanto Mountains to Kyushu Island, a distance > 800 km. However, Aoki et al. (2007) recently demonstrated that protoliths of metamorphic rocks in the Oboke area of the belt in central Shikoku accumulated at the trench after ca. 90-80 Ma. Furthermore, Aoki et al. (2008) showed that these rocks suffered blueschist metamorphism at 66-61 Ma, which differs from the timing of the Sanbagawa metamorphism. Thus, these results show that the Sanbagawa belt in Shikoku is a composite metamorphic belt. We, therefore, redefine the traditional Sanbagawa belt; the structurally upper part is the Sanbagawa metamorphic belt (sensu stricto). It formed as an accretionary complex at ca. 140-130 Ma and subsequently experienced BS-EC facies metamorphism at ca. 120-110 Ma (Okamoto et al., 2004). By contrast, the structurally lower segment termed the Shimanto BS facies metamorphic belt, formed as an accretionary complex after ca. 90-80 Ma and experienced peak metamorphism at ca. 60 Ma. Our observations have important implications for the lateral extension of these two metamorphic belts in SW Japan. The accretionary ages of the traditional Sanbagawa belt in the Kanto Mountains are younger than the Sanbagawa peak metamorphic age (Tsutsumi et al., 2009), clearly indicating that the entire region of Kanto Mountains Sanbagawa must belong to the Shimanto metamorphic belt. The same timing relationships were also found for the Sanbagawa belt on Kii Peninsula (Otoh et al., 2010). These results, therefore, indicate that the Shimanto metamorphic belt is exposed in Shikoku, Kii, and Kanto, thus the spatial distribution of Sanbagawa belt (ss) is less than half of its previous extent. The metamorphic grade of the Kanto Mountains in the Shimanto metamorphic belt ranges from pumpellyite-actinolite facies to epidote-amphibolite facies. Therefore, the higher-grade rocks of the Shimanto metamorphic rocks are exposed in the Kanto Mountains in comparison with Shikoku and Kii Peninsula. Hence, these two distinct BS-EA-EC (?) metamorphic belts are virtually equivalent in terms of spatial distribution, metamorphic range of grade, and facies series. Pacific-type orogenic belts typically comprise accretionary complex, high-P/T metamorphic belt, fore-arc sediments, and batholith belt landward from the trench (Maruyama et al., 1996). In SW Japan, the Sanbagawa belt (ss) is paired with the Ryoke low-P/T metamorphic belt and with the ca. 120-70 Ma Sanyo TTG batholith belt. Furthermore the related fore-arc basin may have developed penecontemporaneously with the Shimanto BS-EA orogeny, which is paired with the late Cretaceous to early Tertiary San-in TTG belt, which extending along the Japan Sea coast. In-between the intervening Izumi Group, a fore-arc basin deposit formed during the Campanian to Maastrichtian. Thus, these two groups of orogenic units, which formed during independent orogenies were both extensively modified during the opening of the Japan Sea ca. 20 Ma. The southward thrusting of the Ryoke and Cretaceous TTG belts over the Sanbagawa extended beyond the southern limit of the Sanbagawa, leading the up-down relationship of the Sanbagawa (ss) and the Ryoke belts.
著者
大藤 茂 下條 将徳 青木 一勝 中間 隆晃 丸山 茂徳 柳井 修一
出版者
公益社団法人 東京地学協会
雑誌
地学雑誌 (ISSN:0022135X)
巻号頁・発行日
vol.119, no.2, pp.333-346, 2010-04-25 (Released:2010-07-06)
参考文献数
41
被引用文献数
33 44

We measured the 206Pb/238U age distribution of detrital zircons in five psammitic schist samples from the Sanbagawa Belt in east-central Shikoku and the western Kii Peninsula to constrain their depositional age. The age-distribution diagrams for the five psammitic schist samples all show that detrital zircons of 100 to 90 Ma are most abundant and the age of the youngest zircon in each sample is less than 80 Ma. Considering the age of the retrogressive metamorphism of these psammitic schists, ca. 80-60 Ma, the protoliths age of the psammitic schists is constrained to 75-70 Ma, correlative to the age of the sandstone of the Middle Shimanto Belt (Yanai, 1984). A similar age-distribution has already been reported for two psammitic schist samples from the Central Unit of the Sanbagawa Belt in the Kanto Mountains (Tsutsumi et al., 2009). Thus the Sanbagawa Belt is most widely occupied by metamorphic rocks originating from rocks of the Middle Shimanto Belt. We also measured the 206Pb/238U age distribution of detrital zircons in Turonian sandstone from the Northern Shimanto Belt in the central Kii Peninsula. The age-distribution diagram shows that detrital zircons of around 128 Ma are most abundant and the age of the youngest zircon in the sample is about 100 Ma. A similar age-distribution has already been reported from a psammitic schist sample from the Southern Unit of the Sanbagawa Belt in the Kanto Mountains, overlying the Central Unit (Tsutsumi et al., 2009). The protolith age is still younger than the metamorphic age of the eclogites in central Shikoku, ca. 120-110 Ma (Okamoto et al., 2004), which occupy the uppermost portion of the Sanbagawa Belt. Although some previous studies suggested that the Sanbagawa Belt consists of metamorphosed Late Jurassic to Early Cretaceous accretionary complex, the present study shows that the belt is largely occupied by metamorphosed Late Cretaceous rocks: the Shimanto Metamorphic Rocks of Aoki et al. (2007). As a result, the Sanbagawa Belt consists of the following three units with different protolith ages: (1) Lower Unit of Shimanto Metamorphic Rocks with protoliths ages of 75-70 Ma and metamorphic ages of 70-60 Ma, (2) Upper Unit of Shimanto Metamorphic Rocks with protoliths ages of 95-85 Ma and metamorphic ages of 85-75 Ma, and (3) Sanbagawa Metamorphic Rocks (s.s.) with protoliths ages of Late Jurassic to Early Cretaceous and metamorphic ages of 120-110 Ma. The protoliths of the Upper and Lower units of the Shimanto Metamorphic Rocks are most likely rocks of the Northern Shimanto and Middle Shimanto belts, respectively.
著者
山北 聡 大藤 茂
出版者
日本地質学会
雑誌
地質學雜誌 = THE JOURNAL OF THE GEOLOGICAL SOCIETY OF JAPAN (ISSN:00167630)
巻号頁・発行日
vol.113, no.11, pp.585-590, 2007-11-15
参考文献数
24
被引用文献数
1 1

Folds in accretionary complexes, especially those in the Mino-Tanba Belt, are often called not “syncline” or “anticline” but “synform” or “antiform” evenly. However, this usage is not correct, since it cannot distinguish an inverted fold from a normal one. They are structurally quite different and distinguished from each other as a syformal anticline and a syncline or as an antiformal syncline and an anticline in normal sedimentary strata. “Synform” and “antiform” are terms for the folds that are out of this distinction; they should be used when the stratigraphic relationship or the facing is unknown. This terminology should be followed also in accretionary complexes, and “syncline” and “anticline” should be defined not with a chronological relationship between the strata in the core and the limbs, as in many glossaries and encyclopedias, but with a facing direction of the both limbs, namely, as a fold whose limbs are facing syn-axisward or anti-axisward, respectively.
著者
金光 玄樹 下條 将徳 平田 岳史 横山 隆臣 大藤 茂
出版者
公益社団法人 東京地学協会
雑誌
地学雑誌 (ISSN:0022135X)
巻号頁・発行日
vol.120, no.6, pp.889-909, 2011-12-25 (Released:2012-03-05)
参考文献数
65
被引用文献数
4

We measured the LA-ICP-MS U-Pb age distribution of detrital zircons in three psammitic schist samples of Hitachi and Nishidohira medium P/T metamorphic rocks from the southern part of Abukuma Belt, Northeast Japan. It has been proposed that these medium P/T metamorphic rocks mark the eastern extension of the Triassic collisional suture between the North China and South China blocks. Therefore, we aim to obtain the age of sedimentation, stratigraphy, and provenance of their protolith from the measurements, and evaluate the above proposition. The psammitic schist sample (DIO-9) of Hitachi Metamorphic Rocks, originating from quartzose sandstone at the lowest part of the Daioin Formation, contains detrital zircons of the youngest age clustered around 410 Ma and the youngest zircon at 395 ± 20 Ma (206Pb/238U age; 2σ). Considering that the upper part of the Daioin Formation contains Visean (Lower Carboniferous) corals and that the formation intercalates abundant felsic tuff layers, the lowest part of the Daioin Formation is likely to be correlated with Devonian Nakasato or Lower Carboniferous Hikoroichi Formation of South Kitakami Belt, Northeast Japan. Nishidohira Metamorphic Rocks lie beneath ultramafic rocks along the base of Hitachi Metamorphic Rocks, and consist of mafic, siliceous, calcareous, pelitic, and psammitic schists or gneisses. Because the siliceous schist of Nishidohira Metamorphic Rocks is meta-pelagic chert, the metamorphic rocks presumably originated from an accretionary complex. The ages of detrital zircons in two psammitic schist samples (ND-12 and -13) of Nishidohira Metamorphic Rocks mostly fall between ca. 300 Ma and 200 Ma, with the youngest two zircons at 154 ± 6 Ma (ND-12) and 175 ± 3 Ma (ND-13) (206Pb/238U age, 2σ). The protolith age of the psammitic schists must be ca. 154 ± 6 Ma (Kimmeridgian of Late Jurassic) and ca. 175 ± 3 Ma (Aalenian of Middle Jurassic) or younger, suggesting that Nishidohira Metamorphic Rocks originated from a Jurassic accretionary complex. In the Hitachi area three tectonostratigraphic units superpose, i.e., in ascending order, (1) the Jurassic accretionary complex of Nishidohira Metamorphic Rocks, (2) ultramafic rocks, and (3) Hitachi Metamorphic Rocks that are at least partly correlated with the Paleozoic sequence of South Kitakami Belt. The tectonostratigraphy is similar to that of non-metamorphic rocks of Kitakami Mountains, Northeast Japan, where (1) the Jurassic accretionary complex of North Kitakami Belt is overlain by (2) the Hayachine mafic–ultramafic complex, which in turn is overlain by (3) the Paleo–Mesozoic succession of South Kitakami Belt.
著者
青木 一勝 大藤 茂 柳井 修一 丸山 茂徳
出版者
Tokyo Geographical Society
雑誌
地學雜誌 (ISSN:0022135X)
巻号頁・発行日
vol.119, no.2, pp.313-332, 2010-04-25
被引用文献数
10 24

The Sanbagawa metamorphic belt in SW Japan was previously considered to extend in the E-W direction from the Kanto Mountains to Kyushu Island, a distance > 800 km. However, Aoki <i>et al.</i> (2007) recently demonstrated that protoliths of metamorphic rocks in the Oboke area of the belt in central Shikoku accumulated at the trench after <i>ca.</i> 90-80 Ma. Furthermore, Aoki <i>et al.</i> (2008) showed that these rocks suffered blueschist metamorphism at 66-61 Ma, which differs from the timing of the Sanbagawa metamorphism. Thus, these results show that the Sanbagawa belt in Shikoku is a composite metamorphic belt. We, therefore, redefine the traditional Sanbagawa belt; the structurally upper part is the Sanbagawa metamorphic belt (<i>sensu stricto</i>). It formed as an accretionary complex at <i>ca.</i> 140-130 Ma and subsequently experienced BS-EC facies metamorphism at <i>ca.</i> 120-110 Ma (Okamoto <i>et al.</i>, 2004). By contrast, the structurally lower segment termed the Shimanto BS facies metamorphic belt, formed as an accretionary complex after <i>ca.</i> 90-80 Ma and experienced peak metamorphism at <i>ca.</i> 60 Ma. Our observations have important implications for the lateral extension of these two metamorphic belts in SW Japan. The accretionary ages of the traditional Sanbagawa belt in the Kanto Mountains are younger than the Sanbagawa peak metamorphic age (Tsutsumi <i>et al.</i>, 2009), clearly indicating that the entire region of Kanto Mountains Sanbagawa must belong to the Shimanto metamorphic belt. The same timing relationships were also found for the Sanbagawa belt on Kii Peninsula (Otoh <i>et al.</i>, 2010). These results, therefore, indicate that the Shimanto metamorphic belt is exposed in Shikoku, Kii, and Kanto, thus the spatial distribution of Sanbagawa belt (<i>ss</i>) is less than half of its previous extent. The metamorphic grade of the Kanto Mountains in the Shimanto metamorphic belt ranges from pumpellyite-actinolite facies to epidote-amphibolite facies. Therefore, the higher-grade rocks of the Shimanto metamorphic rocks are exposed in the Kanto Mountains in comparison with Shikoku and Kii Peninsula. Hence, these two distinct BS-EA-EC (?) metamorphic belts are virtually equivalent in terms of spatial distribution, metamorphic range of grade, and facies series. Pacific-type orogenic belts typically comprise accretionary complex, high-P/T metamorphic belt, fore-arc sediments, and batholith belt landward from the trench (Maruyama <i>et al.</i>, 1996). In SW Japan, the Sanbagawa belt (<i>ss</i>) is paired with the Ryoke low-P/T metamorphic belt and with the <i>ca.</i> 120-70 Ma Sanyo TTG batholith belt. Furthermore the related fore-arc basin may have developed penecontemporaneously with the Shimanto BS-EA orogeny, which is paired with the late Cretaceous to early Tertiary San-in TTG belt, which extending along the Japan Sea coast. In-between the intervening Izumi Group, a fore-arc basin deposit formed during the Campanian to Maastrichtian. Thus, these two groups of orogenic units, which formed during independent orogenies were both extensively modified during the opening of the Japan Sea <i>ca.</i> 20 Ma. The southward thrusting of the Ryoke and Cretaceous TTG belts over the Sanbagawa extended beyond the southern limit of the Sanbagawa, leading the up-down relationship of the Sanbagawa (<i>ss</i>) and the Ryoke belts.
著者
下條 将徳 大藤 茂 柳井 修一 平田 岳史 丸山 茂徳
出版者
公益社団法人 東京地学協会
雑誌
地学雑誌 (ISSN:0022135X)
巻号頁・発行日
vol.119, no.2, pp.257-269, 2010-04-25 (Released:2010-07-06)
参考文献数
32
被引用文献数
32 43

The Japanese Islands have grown through the formation of igneous rocks and accretionary prism caused by subduction of oceanic plates. However, the timing of the initiation of the subduction is not well defined. The South Kitakami Belt (SKB) in NE Japan is the best field to solve this problem. Here, basement igneous rocks are covered by successions of Ordovician to Early Cretaceous beds (450-100 Ma). We obtained LA-ICP-MS U-Pb zircon ages from the following localities. Along the Yakushigawa-Valley section in the northeastern part of the SKB, we examined the ages of (1) trondhjemite of the Kagura Complex of basement igneous rocks, (2) felsic tuff of the Koguro Formation conformably covering the Kagura Complex, and (3) Yakushigawa Formation covering the Koguro Formation and lying under the Silurian Odagoe Formation. In the Ohasama area in the northwestern part of the SKB, we examined the age of (4) Nameirizawa Formation, which probably lies below the Silurian Orikabetoge Formation. Moreover, we examined the ages of four samples from the Hikami Granite body in the central part of the SKB. The ages of trondhjemite (08331-5: 466±6 Ma) of the Kagura Complex and felsic tuff (08331-4b: 457±10 Ma) of the Koguro Formation indicate that the subduction of an oceanic plate had already started at 466 Ma, and that the Koguro Formation is the oldest age-known formation of the SKB. The tuffaceous sandstone of the Yakushigawa Formation (08331-3) has detrital zircons with the youngest age cluster of around 425 Ma, and is probably a Silurian formation. The tuffaceous sandstone of the Nameirizawa Formation (08331-9) has detrital zircons with the youngest age cluster of around 430 Ma. The formation is probably a Silurian formation and is correlated with the Yakushigawa Formation. Precise ages of around 412 Ma were obtained from the Hikamiyama body of the Hikami Granitic Rocks (08330-1,-3,-4), clearly suggesting that at least some parts of the body are not pre-Silurian basement.