著者
北薗 幸一
出版者
東京大学
巻号頁・発行日
1999

博士論文
著者
長野 幹雄 川合 伸明 長谷川 直 北薗 幸一 佐藤 英一
出版者
一般社団法人 日本機械学会
雑誌
日本機械学会論文集 (ISSN:21879761)
巻号頁・発行日
vol.84, no.863, pp.18-00012, 2018 (Released:2018-07-25)
参考文献数
15

With the development of spacecraft, the brittle materials like ceramics and glass have been used for significant components especially in optical and thermal systems. However, they are vulnerable to damage by hypervelocity impact of space debris and micrometeoroids. Against a backdrop of increasing number of space debris, impact-damage evaluation on brittle materials become a growing concern. In this study, a series of hypervelocity impact experiments has been conducted to evaluate internal damage propagation mechanism in a fused-silica-glass plate target by impacting a stainless steel projectile with 1-mm diameter in the velocity range around 2 km/s. Damage propagation behavior was observed from two directions simultaneously by means of in-situ shadowgraph coupled with an ultra-high-speed video camera. The observation concentrates on propagation behavior of lateral cracks and that of internal failure. The former is revealed to a mass of small cracks which were generated by passing of the surface stress wave. The latter propagation is affected by the longitudinal and transversal waves, the reflection of the spherical stress waves on the back surface of target. The failure propagates rapidly two times by the reflected waves: first rapid propagation was caused by tensile stress induced by the reflected longitudinal wave, the secondary rapid propagation was caused by shear-compression mixture stress induced by the reflected transversal wave, which was generated by mode conversion of the longitudinal wave.
著者
佐藤 英一 松下 純一 北薗 幸一
出版者
宇宙科学研究所
雑誌
萌芽研究
巻号頁・発行日
2001

構造用複合材料における材料設計の目的は、望みの力学的性質すなわち製品の応力方向へ高い強度や靱性を得ることである。近年、形状記憶合金繊維の形状記憶ひずみにより生じる内部応力を利用して複合材料の力学的性質を改善する試みがなされているが、強化方向が繊維の方向で決められてしまうことは、通常の繊維強化複合材料と変わりがない。本研究は、方向や大きさの制御が可能である内部応力の起源として「磁歪」に注目し、等方的な磁歪粒子強化複合材料に磁化熱処理を行うことにより、選択方向を強化した異方性複合材料を創製することを目的とした。モデル材料系には、分散粒子には超磁歪材料Tb_<0.3>Dy_<0.7>Fe_2(Tafenol-D)、マトリクスにはAl, Pb, Snを選んだ。はじめに押し出しによる粉末法により、Al/Tafenol-D, Pb/Tafenol-D複合材料を作製し緩和プロセスを観察したが、磁化熱処理中にひずみの緩和は観察されなかった。押し出しでは粒子を分散させるのに加工度が不十分であると考えられたので、繰り返し圧延接合法(ARB法)によりSn/8vol%Tafenol-D複合材料を作製した。水冷電磁石にオイルバスを設置し、最大0.8T、453Kでの磁化熱処理を施し、緩和プロセス中のひずみ変化を測定した。磁場負荷により複合材料に生じた瞬間ひずみは、予想通り、磁場方向に伸び、垂直方向に縮みの方向であり、その大きさも予測値と一致していた。瞬間ひずみの発生後、磁化熱処理中にひずみは指数関数的に減少するのが観察された。その緩和時間は、粒子径と拡散係数から予測される値とほぼ一致しており、緩和時間のアーレニウスプロットから緩和の活性化エネルギーが求められた。以上より、選択方向強化複合材料創製の要となる磁化熱処理中の緩和プロセスを直接観察することができた。