著者
川畑 光希 松原 靖子 本田 崇人 今井 優作 田嶋 優樹 櫻井 保志
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会全国大会論文集 第34回 (2020) (ISSN:27587347)
巻号頁・発行日
pp.4K2GS303, 2020 (Released:2020-06-19)

顧客生涯価値(LTV)は顧客評価における重要な指標であり,LTVを正確に予測することで顧客に対しより適切なマーケティングを行うことが可能になる.本稿では,購買ログデータを対象とし,顧客ID,商品ID,時間の組みで表されるイベントシーケンスから潜在的な購買特性を発見し,それらに基づくLTV予測を行うための手法を提案する.実データを用いた実験では,提案手法が与えられた購買ログの中から有用な購買特性を発見し,従来手法よりも高い精度でLTV予測を行うことを確認した.
著者
川畑 光希 松原 靖子 櫻井 保志
雑誌
情報処理学会論文誌データベース(TOD) (ISSN:18827799)
巻号頁・発行日
vol.11, no.1, pp.1-10, 2018-04-17

本論文では,時系列データストリームを対象とした自動特徴抽出手法であるStreamScopeについて述べる.StreamScopeはIoTアプリケーションやWebアクセス履歴等の大規模なデータストリームから,(a)自動的に時系列パターンを発見し,(b)それらの特徴を統計的に要約しながら,データストリームを構成するすべてのパターンを明らかにする.また,(c)計算時間はデータストリームの長さに依存せず,ストリームマイニングに適した高速な処理を行う.実データを用いた実験では,提案手法がデータストリームに含まれる特徴的なパターンの種類と変化点を自動的かつ正確にとらえることを確認した.さらに,提案手法はオンライン処理でありながら高精度であり,計算時間について大幅な性能向上を達成していることを明らかにした.