著者
綿谷 安男 幸崎 秀樹 濱地 敏弘 松井 卓 梶原 毅 中路 貴彦
出版者
九州大学
雑誌
基盤研究(B)
巻号頁・発行日
2002

本研究の目的は,多項式や有理関数の反復合成のつくる複素力学系からヒルベルト空間上の作用素のつくる特別なC^*環を構築し、異なる二つの分野の関係を考察することであった。Julia集合J_Rの連続関数環A=C(J_R)上のヒルベルト双加群X_RからToeplitz-Pimsner環T_X_Rとその商環であるCuntz-Pimsner O_R=O_R(J_R)を構成した。同様にしてC^*環O_R(C^^^)やO_R(F_R)も構成できた。Rが2次式R(z)=z^2+cの時でも、cがMandelbrot集合に属さない場合は、C^*環O_RはCuntz環O_2と同型になる。cがMandelbrot集合に属する場合は、c=0やテント写像を与えるc=-2のような特殊な時はその構造がわかった。今回の研究での最も大きな成果は、Rが2次以上の有理関数の時、C^*環O_Rはいつでも純無限の単純C^*環になることを証明できたことである。また、分岐点の構造がヒルベルト双加群X_R上のコンパクト作用素全体K(X_R)と、A=C(J_R)の作用の共通部分に対応するAのイデアルI_Xできっちり記述できることを示した。それにより、Fatou集合F_RとJulia集合J_Rによるリーマン球面の分解の対応物としてC^*環O_R(J_R)を大きい環C^*環O_R(C^^^)のFatou集合に対応するあるイデアルによる商環として実現した。さらに、有理関数Rのジュリア集合が縮小写像族の自己相似集合として実現できる場合を手がかりとして、コンパクト集合上の縮小写像族によるフラクタル図形での類似を研究した。特に重要な成果として、その開集合条件が対応するC^*環の純無限単純性を導くことを示した。またそのK群を計算し縮小写像族の言葉だけで書いた。テント写像やシェルピンスキーのギャスケットやコッホ曲線などの具体例についてもK群を計算したりそのtorsion要素を調べて、異なる縮小写像系が同じフラクタル図形を与えても、同型でないC^*環がでてくることもわかった。
著者
綿谷 安男 幸崎 秀樹 榎本 雅俊
出版者
九州大学
雑誌
萌芽研究
巻号頁・発行日
2006

Gelfand-Ponomarevは有限次元空間の4個の部分空間の直既約な配置について、完全分類を行った。全体空間が無限次元のヒルベルト空間の場合は榎本氏と代表者の共同研究で4つの部分空間の既約な配置の非自明な具体例を無限個構成することができた。今回の研究では、さらに、有向グラフ(quiver)に沿ったヒルベルト空間の部分空闇の配置の研究を試みた。有向グラフ(quiver)の頂点と辺をヒルベルト空間とその間の作用素として表すヒルベルト表現を研究する。特に包含写像を考えれば、部分空間を有向グラフに沿って配置する問題を含んでいる。有限次元空間では、直既約な表現が有限個しかないのはディンキン図形のAn,Dn,E6,E7,E8に限るというGabrierの定理がある。この定理を関数解析の手法で無限次元化するのが、大きな目的である。鏡映関手とその双対性を無限次元のヒルベルト空間の枠組みで構成したい。無限次元の直既約なヒルベルト表現の非存在を仮定して,quiverがディンキン図形のAn,Dn,E6,E7,E8に限られることは、去年度に示すことができた。しかしその逆である、quiverがディンキン図形のAn,Dn,E6,E7,E8であれば、無限次元の直既約なヒルベルト表現が存在しないということは、ようやくAnの時に示せたのが本年の成果である。さらにBrennerによる3つの部分空間の配置の標準分解を無限次元で特別なときに示せた。拡大ディンキン図形の無限次元の直既約なヒルベルト表現にたいしては、不足数という数値的不変量をFredholm作用素の指数を使ってE6,E7の時に導入することができた。