- 著者
-
國吉 康夫
寒川 新司
塚原 祐樹
鈴木 真介
森 裕紀
- 出版者
- 一般社団法人 日本ロボット学会
- 雑誌
- 日本ロボット学会誌 (ISSN:02891824)
- 巻号頁・発行日
- vol.28, no.4, pp.415-434, 2010 (Released:2012-01-25)
- 参考文献数
- 82
- 被引用文献数
-
4
4
Early human motor development has the nature of spontaneous exploration and boot-strap learning, leading to open-ended acquisition of versatile flexible motor skills. Since dexterous motor skills often exploit body-environment dynamics, we formulate the developmental principle as the spontaneous exploration of consistent dynamical patterns of the neural-body-environment system. We propose that partially ordered dynamical patterns emergent from chaotic oscillators coupled through embodiment serve as the core driving mechanism of such exploration. A model of neuro-musculo-skeletal system is constructed capturing essential features of biological systems. It consists of a skeleton, muscles, spindles, tendon organs, spinal circuits, medullar circuits, and a basic cortical model. Models of self-organizing cortical areas for primary somatosensory and motor areas are introduced. A human infant model is constructed and put through preliminary experiments. Some meaningful motor behavior emerged including rolling over and crawling-like motion. The results show the possibility that a rich variety of meaningful behavior can be discovered and acquired by the neural-body dynamics without pre-defined coordinated control circuits.