著者
畔上 秀幸
出版者
一般社団法人 日本応用数理学会
雑誌
応用数理 (ISSN:24321982)
巻号頁・発行日
vol.11, no.3, pp.245-248, 2001-09-14 (Released:2017-04-08)
参考文献数
10
著者
新谷 浩平 畔上 秀幸 山田 崇恭
出版者
一般社団法人 日本機械学会
雑誌
日本機械学会論文集 (ISSN:21879761)
巻号頁・発行日
vol.87, no.900, pp.21-00138, 2021 (Released:2021-08-25)
参考文献数
30

This paper proposes a solution to a multi-material robust topology optimization problem of density type considering material uncertainties based on H1 gradient method. A material interpolation with respect to the density is introduced using the rational approximation of material properties (RAMP) and generalized it for the case with an arbitrary number of materials. Material uncertainty is considered by introducing random variables in the material interpolation scheme. The probability density functions of the random variables are assumed to be given. The topology optimization is formulated using the density which is given by a sigmoid function of the design variable. A weighted sum of the mean and standard deviation of the mean compliance is used as the objective function to control the tradeoff between optimality and robustness. To evaluate statistical moments of the objective function effectively, the univariate dimension reduction (UDR) and the Gauss-type quadrature sampling are introduced. A scheme to solve the robust topology optimization problem is presented using an iterative algorithm based on the H1 gradient method for reshaping. Examples of a two-dimensional cantilever beam under various material uncertainty exhibit the efficiency and flexibility of the approach. The accuracy of UDR is validated by comparing the results to the Monte Carlo approach.
著者
呉 志強 畔上 秀幸
出版者
一般社団法人 日本機械学会
雑誌
日本機械学会論文集 C編 (ISSN:03875024)
巻号頁・発行日
vol.61, no.583, pp.930-937, 1995-03-25 (Released:2008-02-26)
参考文献数
29
被引用文献数
6 10

We present a practical method of numerical analysis for optimization problems of domains in which natural vibration problems of linear elastic bodies are defined. In this paper, we apply the traction method that was proposed as a solution to the domain optimization problems to elliptic boundary value problems. The treated problems are those which determine the domain that maximizes a specified vibration eigen value, which is defined by the squared natural frequency, and that moves several specified vibration eigen values in a specified direction. Using the Lagrange multiplier method, we obtain the shape gradient functions for these domain optimization problems from the optimality criteria. We show the successful resolution of the problems of beamlike plates clamped at one end and at both ends.
著者
畔上 秀幸 海津 聰 AZEGAMI Hideyuki KAIZU Satoshi
出版者
一般社団法人日本応用数理学会
雑誌
日本応用数理学会2008年度年会講演予稿集
巻号頁・発行日
pp.301-302, 2008 (Released:2015-02-18)

日本応用数理学会2008年度年会(2008年9月17日-18日、東京大学柏キャンパス)