著者
渡辺 大一 福谷 俊 伊川 博 山浦 哲明 加瀬 則子 水谷 弘子
出版者
The Pharmaceutical Society of Japan
雑誌
Chemical and Pharmaceutical Bulletin (ISSN:00092363)
巻号頁・発行日
vol.34, no.11, pp.4855-4858, 1986-11-25 (Released:2008-03-31)
参考文献数
8
被引用文献数
2 2

Two crystal forms of the new dihydropyridine derivative, methyl (E)-3-phenyl-2-propen-1-yl 1, 4-dihydro-2, 6-dimethyl-4-(3-nitrophenyl)pyridine-3, 5-dicarboxylate (FRC-8411), were obtained by recrystallization from methanol. These crystal forms were identified by using powder X-ray diffractometry, infrared spectroscopy, differential scanning calorimetry (DSC) and thermogravimetry. By means of DSC, the melting points of forms I and II were found to be 140 and 121°C, respectively.Forms I and II, having a similar particle size distribution, were administered orally or intravenously to spontaneously hypertensive rats. In the case of oral administration, the hypotensive action of form I was milder than that of form II and tachycardia was not observed after administration of form I.
著者
福谷 俊行 安村 禎明 上原 邦昭
出版者
一般社団法人情報処理学会
雑誌
情報処理学会研究報告コンピュータビジョンとイメージメディア(CVIM) (ISSN:09196072)
巻号頁・発行日
vol.2008, no.27, pp.549-556, 2008-03-11

稿では,機械学習を用いた新しい 3 次元形状復元の手法を提案する.従来の 3 次元形状復元手法では様々な拘束条件が必要であるが,本手法ではこのような条件を用いずに,1 枚の画像から物体表面の法線ベクトルを復元する.これを実現するために,物体の明度と法線の関係を機械学習を用いて獲得する.まず様々な環境下において 3 次元形状が既知である画像とその法線マップから,k x k の窓を使って窓内の明度・色相と窓の中心の法線を得る.これらの関係を機械学習により獲得し,その結果を用いて未知入力画像における法線を復元する.この復元によって得られた法線を,学習を用いて補正する手法も提案する.また,法線から得られた深さを基に,異常な法線を検出して修正する手法も提案する.顔画像を対象とした実験では,従来手法よりも提案手法の方が高速で精度の高い復元ができた.We propose a new method for 3D reconstruction by a machine learning approach. Existing methods for 3D reconstruction are restricted by various assumptions. However, the proposed method does not use any assumptions and reconstructs normal vectors of an object surface from a single image. To achieve this, we acquire a relationship between brightness and normal vectors of objects by machine learning. First, k x k brightness and hues are obtained from images whose 3D shape is known under various environment in a k x k pixel window and a normal vector is obtained from center of k x k pixel window from normal map. These relations are obtained using machine learning. Then normal vectors of an unknown input image are reconstructed by using these relations. We also propose a method for correcting the reconstructed normal vectors by machine learning and a method for correcting the abnormal normal vectors detected by using the depth map. Experiments using human face images show that the proposed method achieved faster and high-precision 3D reconstruction than existing methods.