著者
長谷部 高広 黒田 紘敏 寺本 央 正宗 淳 山田 崇恭
出版者
一般社団法人 日本応用数理学会
雑誌
日本応用数理学会論文誌 (ISSN:24240982)
巻号頁・発行日
vol.30, no.3, pp.249-258, 2020 (Released:2020-09-25)
参考文献数
7
被引用文献数
1

概要. 本論文では,山田により提案されている偏微分方程式の解,もしくは熱方程式の解を用いて,形状の法線ベクトルを与える場を構成できることを証明する.最初に,問題設定を示すと共に,偏微分方程式の有限要素法による数値解析例を示す.次に,各方程式の場合における定理とその証明を示す.
著者
山田 崇恭 正宗 淳 寺本 央 長谷部 高広 黒田 紘敏
出版者
一般社団法人 日本機械学会
雑誌
日本機械学会論文集 (ISSN:21879761)
巻号頁・発行日
vol.85, no.877, pp.19-00129, 2019 (Released:2019-09-25)
参考文献数
22

This paper aims to develop a scheme for geometrical feature constraints in topology optimization for Additive Manufacturing (AM) without support structures based on the Partial Differential Equation (PDE) of geometrical shape features. To begin with, the basic concept of topology optimization and a level set-based topology optimization method are briefly described. Second, the PDE system for geometrical shape features is formulated. Here, aspects of the distribution of state variables are discussed using an analytical solution of the PDE. Based on the discussion, a function indicating the extended normal vector including geometrical singularity points is formulated. Third, geometrical requirements of product shape in AM without support structures – the so-called overhang constraint – are clarified in two-dimensions. A way of extending of the proposed concept to three-dimensional problems is also clarified. Additionally, geometrical singularities in the overhang constraint are discussed. Based on the PDE system and the clarified geometrical requirements, the overhang constraint including geometrical singularities is formulated. A topology optimization problem of the linear elastic problem is formulated considering the overhang constraint. A level set-based topology optimization algorithm is constructed where the Finite Element Method (FEM) is used to solve the governing equation of the linear elastic problem and the PDE, and to update the level set function. Finally, two-dimensional numerical examples are provided to confirm the validity and utility of the proposed method.