著者
鳥居 寛之 関原 佑奈 黒田 直史 鳥井 寿夫
出版者
一般社団法人 日本物理学会
雑誌
大学の物理教育 (ISSN:1340993X)
巻号頁・発行日
vol.23, no.3, pp.147-152, 2017-11-15 (Released:2017-12-15)
参考文献数
9

1.はじめに東京大学における全学の前期課程教育を担う教養学部では,毎年の理系学生1800名に必修で基礎物理学実験を課している.これまでに,その全体像1)と熱力学種目の開発2),また,初回の物理
著者
村上 道夫 坪倉 正治 鳥居 寛之 Yuliya Lyamzina 林 岳彦 宇野 賀津子
出版者
一般社団法人 日本リスク学会
雑誌
リスク学研究 (ISSN:24358428)
巻号頁・発行日
vol.32, no.4, pp.259-263, 2023-05-15 (Released:2023-05-16)
参考文献数
8

Social networking services (SNS) such as Twitter play an important role in the collective knowledge, consensus of citizens and decision making regarding various countermeasures. In particular, since SNS have great power to communicate information in the context of disasters and pandemics, scientists and administrators are required to understand how people’s collective knowledge and trust are formed through SNS and how to communicate risk and scientific information using SNS. Therefore, a special session entitled “Considering the state of scientific information dissemination during crises in the age of social networking” was held at the 35th Annual Meeting of the Society for Risk Analysis Japan. Risk and scientific information dissemination using SNS regarding the Fukushima disaster was discussed: characteristics related to information diffusion on Twitter, the evaluation and fact check of information that influenced the evacuation behavior in Fukushima, and recommendations for scientific information dissemination in the age of SNS derived from these research findings. This paper introduces the contents of the presentations and discussions at the session.
著者
鳥居 寛之
出版者
一般社団法人 日本物理学会
雑誌
大学の物理教育 (ISSN:1340993X)
巻号頁・発行日
vol.15, no.2, pp.77-81, 2009-07-15 (Released:2018-11-30)
参考文献数
6
被引用文献数
1
著者
鳥居 寛之 黒田 直史 檜垣 浩之 船越 亮 大島 永康
出版者
社団法人 プラズマ・核融合学会
雑誌
プラズマ・核融合学会誌 (ISSN:09187928)
巻号頁・発行日
vol.80, no.12, pp.1012-1021, 2004 (Released:2005-07-14)
参考文献数
46

Antiprotons produced by a proton synchrotron are decelerated and cooled first to 5.3 MeV by stochastic cooling and electron cooling in the Antiproton Decelerator (AD) ring, then to 111 keV by a Radio Frequency Quadrupole Decelerator (RFQD). After the deceleration of the RFQD, antiprotons are degraded by thin PET foils and injected into the Multi-Ring electrode Trap(MRT). Electrons are preloaded in the MRT to cool the antiprotons to subelectron volt energy region. Ramping up the trapping potential slowly allows ultra-slow antiprotons of 10-500eV to be extracted from the strong magnetic field region. Positrons from 22Na are cooled by N2 gas or by electrons to form a cold positron plasma. A rotating electric field is used to radially compress the plasma.