著者
Yuya Mochizuki Tiejun Zhao Wataru Kanematsu Takashi Kawasaki Takeshi Saito Akio Ohyama Akimasa Nakano Tadahisa Higashide
出版者
The Japanese Society for Horticultural Science
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.UTD-055, (Released:2019-04-11)
被引用文献数
5

To clarify the effect of ultrafine bubbles (UFBs) on the growth of tomato seedlings, we investigated elongation growth and dry matter production by analysing growth under different assimilation conditions and by modelling. The leaf area enlargement rate of plants grown with UFB nutrient solution increased and the specific leaf area (SLA) decreased at 18 days after sowing (DAS) relative to those grown without UFB solution. Thus, UFBs increased both leaf area and leaf thickness. UFB significantly increased the relative growth rate (RGR) and net assimilation rate (NAR) at 18 DAS, but there was no significant difference in SLA, RGR, and NAR between treatments at 25 DAS. These results were used to model plant growth with and without UFB treatment. In a second experiment, UFB treatment increased aboveground dry weight under a low-assimilation condition, but had no significant effect under a high-assimilation condition. Our model supported these results. It was also implied that UFB treatment affected leaf area expansion, but not dry matter production. Although the values predicted by the model were slightly lower than observed, it was possible to predict the effect of UFB treatment on plant growth with high accuracy.
著者
Yoichi Kawazu Shunsuke Imanishi Hirotaka Yamaguchi Akio Ohyama Tsukasa Nunome Koji Miyatake Hiroyuki Fukuoka
出版者
The Japanese Society for Horticultural Science
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.UTD-022, (Released:2018-11-03)
被引用文献数
1

The Cauliflower mosaic virus 35S promoter (P35S) induces transgene expression with insufficient activity and stability in some plant species, including lettuce. To develop a system to provide sufficient gene expression, a polyubiquitin promoter (PLsUbi) and terminator (TLsUbi) were isolated from lettuce, and this system was functionally compared with the conventional P35S-NOS terminator (P35S-Tnos) system by using a β-glucuronidase (GUS) reporter gene. In transgenic Arabidopsis, PLsUbi induced higher GUS activity than P35S, and the PLsUbi-TLsUbi combination induced higher GUS activity compared with the PLsUbi-Tnos combination, suggesting that the polyubiquitin terminator promotes transgene expression in concert with PLsUbi. The PLsUbi-TLsUbi combination induced less accumulation of GUS mRNA but > 10-fold higher GUS enzyme activity than the P35S-Tnos combination, suggesting that the PLsUbi-TLsUbi combination translationally promoted GUS expression in Arabidopsis. In transgenic lettuce, PLsUbi-TLsUbi transcrip­tionally and translationally promoted GUS expression, inducing approximately 16-fold-higher accumulation of GUS mRNA and > 800-fold-higher GUS enzyme activity compared with those induced by P35S-Tnos. Bisulfite sequencing methylation analysis of the introduced promoter sequences indicated that, for PLsUbi, the mean percentage of methylated cytosines in lettuce was 3.5 times that in Arabidopsis. For P35S, the mean percentage of methylated cytosines in lettuce was > 10 times that in Arabidopsis, and this methylation may be a major reason underlying the transcriptional inactivation of P35S in lettuce. Together, our results indicate that PLsUbi-TLsUbi promotes transgene expression in lettuce and Arabidopsis and may have broad applications in genetic engineering of additional plant species.