著者
Kana Miura Mutsumi Nakada Shosei Kubota Shusei Sato Soichiro Nagano Akie Kobayashi Mika Teranishi Masaru Nakano Akira Kanno
出版者
The Japanese Society for Horticultural Science
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.UTD-036, (Released:2018-12-26)
被引用文献数
3

The modified ABC model explains the floral morphology of many monocots, such as the lily and tulip, in which the perianth consists of two layers of almost identical petaloid tepals. According to the modified ABC model, B-class genes are expressed in two perianth whorls, inducing the petaloid structure in both whorls 1 and 2. In this study, we analyzed the expression and function of the B-class genes in the grape hyacinth (Muscari armeniacum). We isolated two DEFICIENS (DEF)-like genes (MaDEF1 and MaDEF2) and three GLOBOSA (GLO)-like genes (MaGLOA1, MaGLOA2, and MaGLOB) from M. armeniacum using rapid amplification of cDNA ends (RACE). Expression analysis showed that MaDEF1 and MaDEF2 were expressed in whorls 1, 2, and 3, whereas MaGLOA1, MaGLOA2, and MaGLOB were expressed in all four whorls. These results support the modified ABC model in M. armeniacum. Overexpression of MaGLOA1 and MaGLOB in Arabidopsis thaliana resulted in a morphological change of sepals to petaloid structures in whorl 1, indicating that the function of these genes is similar that of the B-class orthologs PISTILLATA and GLO in A. thaliana and Antirrhinum majus, respectively. In addition, yeast two-hybrid assays revealed strong protein–protein interactions between MaDEF1 and MaGLOA1, suggesting that MaDEF1–MaGLOA1 is likely to have the main B-function in M. armeniacum. These data support the modified ABC model in M. armeniacum.
著者
Yoko Takeuchi Emika Kakizoe Ryosuke Yoritomi Miyuki Iwato Akira Kanno Takao Ikeuchi Mitsutaka Mori Kyoko Murakami Atsuko Uragami Masaru Matsumoto Junichiro Masuda Kaori Sakai Yukio Ozaki
出版者
一般社団法人 園芸学会
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.OKD-104, (Released:2017-09-07)
被引用文献数
5

We investigated the resistance to stem blight disease (Phomopsis asparagi (Sacc.)) in the progeny of two combinations of interspecific crosses between Asparagus officinalis (sensitive) and Asparagus A. kiusianus (resistant) in an effort to produce resistant cultivars. The progeny showed different degrees of disease severity, depending on the combination of crosses. Most of the hybrids derived from AO0060 (A. officinalis) × AK0501 (A. kiusianus) showed high disease resistance comparable to that of A. kiusianus. The results indicate that disease resistance could be introduced from A. kiusianus into A. officinalis, and that the selection of an appropriate cross combination is important for the production of disease-resistant cultivars. We analyzed the parents and hybrids of reciprocal crosses between A. officinalis and A. kiusianus using derived cleaved amplified polymorphic sequence markers to investigate the inheritance of the chloroplast genome, whose inheritance and genetic characteristics are not yet known. The chloroplast DNAs were inherited from the maternal parent, indicating that no major genes related to stem blight resistance were found in the chloroplast DNA.