著者
Eigo Tochimoto Satoshi Iizuka Tadayasu Ohigashi
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.18A, no.Special_Edition, pp.1-7, 2022 (Released:2022-02-11)
参考文献数
24
被引用文献数
5

The influence of an upper-level trough on a Baiu frontal depression (BFD) that caused a heavy rainfall event in southern Kyushu, Japan, on July 4, 2020, was examined using numerical simulations with and without the upper-level trough. The numerical simulation with the upper-level trough (CNTL) reproduced a reasonable well-developed BFD and heavy rainfall in southern Kyushu. Conversely, the numerical simulation without the upper-level trough (NOUT) produced a weaker BFD and notable southward rainfall shift compared with the situation in the CNTL. The weaker BFD for the NOUT was due to weaker convection than that of the CNTL over mainland China. Thus, strong convection over mainland China was essential for the formation and development of the BFD that caused heavy rainfall in southern Kyushu. Additional sensitivity experiments, in which the strength of the upper-level potential vorticity anomalies was reduced to 75, 50, and 25% of the CNTL, showed that the spatial rainfall distribution shifted southward and resulted in a change in precipitation amounts in southern Kyushu because of the weakening of the BFD.
著者
Eigo Tochimoto Satoshi Iizuka Tadayasu Ohigashi
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.18A-001, (Released:2022-01-25)
被引用文献数
5

The influence of an upper-level trough on a Baiu frontal depression (BFD) that caused a heavy rainfall event in southern Kyushu, Japan, on July 4, 2020, was examined using numerical simulations with and without the upper-level trough. The numerical simulation with the upper-level trough (CNTL) reproduced a reasonable well-developed BFD and heavy rainfall in southern Kyushu. Conversely, the numerical simulation without the upper-level trough (NOUT) produced a weaker BFD and notable southward rainfall shift compared with the situation in the CNTL. The weaker BFD for the NOUT was due to weaker convection than that of the CNTL over mainland China. Thus, strong convection over mainland China was essential for the formation and development of the BFD that caused heavy rainfall in southern Kyushu. Additional sensitivity experiments, in which the strength of the upper-level potential vorticity anomalies was reduced to 75, 50, and 25% of the CNTL, showed that the spatial rainfall distribution shifted southward and resulted in a change in precipitation amounts in southern Kyushu because of the weakening of the BFD.
著者
Eigo TOCHIMOTO Tetsuya KAWANO
出版者
(公社)日本気象学会
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.95, no.4, pp.217-237, 2017 (Released:2017-07-04)
参考文献数
39
被引用文献数
4

In Part I of this study, the development processes of Baiu frontal depressions (BFDs) have been examined through case-study numerical experiments. The numerical simulations revealed that latent heating is dominant for the development of BFDs in the western part of the Baiu frontal zone (W-BFDs), west of approximately 140°E, while both latent heating and baroclinicity are important for the development of BFDs in the eastern part of the zone (E-BFDs), east of approximately 140°E. In this study, idealized numerical simulations with zonally homogeneous basic fields are conducted to obtain a more generalized perspective of the development processes of BFDs. The basic fields for the idealized simulations are made from the composites of the environments under which 28 W-BFDs and 43 E-BFDs developed. The idealized simulations successfully reproduce a realistic W-BFD and E-BFD. The W-BFD has a slightly westward-tilted vertical structure, modulated by latent heating at low levels of the atmosphere. In contrast, the E-BFD has a westward-tilted structure through the troposphere, similar to the well-known baroclinic wave structure. Results of available potential energy diagnosis for the effects of latent heating and baroclinicity on the BFD development are consistent with those in Part I. The W-BFD has a mechanism mainly driven by latent heating yielding strong convection, while the E-BFD develops through baroclinic instability in moist atmosphere.