著者
Tomoe Nasuno Masuo Nakano Hiroyuki Murakami Kazuyoshi Kikuchi Yohei Yamada
出版者
公益社団法人 日本気象学会
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.18, pp.88-95, 2022 (Released:2022-05-13)
参考文献数
38
被引用文献数
3

In this study, we explored the impacts of midlatitude western North Pacific (WNP) sea surface temperature (SST) on tropical cyclone (TC) activity at intraseasonal to seasonal time scales during the 2018 boreal summer. During this period, a positive SST anomaly occurred in the midlatitude WNP and subtropical central Pacific; TC activity was abnormally high under the influence of the strong Asian summer monsoon. We performed sensitivity experiments using a global cloud system-resolving model for global SST (control, CTL) and SST that were regionally restored according to midlatitude WNP climatology (MWNPCLM). TC track density in the eastern WNP was higher in CTL than in MWNPCLM, in association with large-scale atmospheric responses; enhanced monsoon westerlies in the subtropical WNP, moist rising (dry subsiding) tendencies, and reduced (enhanced) vertical wind shear in the eastern (western) WNP. Enhanced TC activity in the eastern WNP was more distinct for intense TCs and during the active phase of intraseasonal oscillation (ISO). These results suggest that the impacts of midlatitude SST anomalies can reach lower latitudes to affect TC activity via large-scale atmospheric responses and ISO, which are usually overwhelmed by the impacts of SST anomalies in the tropics and subtropics.
著者
Tomoe Nasuno Masuo Nakano Hiroyuki Murakami Kazuyoshi Kikuchi Yohei Yamada
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.2022-015, (Released:2022-04-01)
被引用文献数
3

In this study, we explored the impacts of midlatitude western North Pacific (WNP) sea surface temperature (SST) on tropical cyclone (TC) activity at intraseasonal to seasonal time scales during the 2018 boreal summer. During this period, a positive SST anomaly occurred in the midlatitude WNP and subtropical central Pacific; TC activity was abnormally high under the influence of the strong Asian summer monsoon. We performed sensitivity experiments using a global cloud system-resolving model for global SST (control, CTL) and SST that were regionally restored according to midlatitude WNP climatology (MWNPCLM). TC track density in the eastern WNP was higher in CTL than in MWNPCLM, in association with large-scale atmospheric responses; enhanced monsoon westerlies in the subtropical WNP, moist rising (dry subsiding) tendencies, and reduced vertical wind shear in the eastern (western) WNP. Enhanced TC activity in the eastern WNP was more distinct for intense TCs and during the active phase of intraseasonal oscillation (ISO). These results suggest that the impacts of midlatitude SST anomalies can reach lower latitudes to affect TC activity via large-scale atmospheric responses and ISO, which are usually overwhelmed by the impacts of SST anomalies in the tropics and subtropics.