著者
Yuki Sudo Hiroyuki Terashima Rei Abe-Yoshizumi Seiji Kojima Michio Homma
出版者
The Biophysical Society of Japan
雑誌
BIOPHYSICS (ISSN:13492942)
巻号頁・発行日
vol.5, pp.45-52, 2009 (Released:2009-06-12)
参考文献数
25
被引用文献数
18 22

Flagellar motor proteins, MotA/B and PomA/B, are essential for the motility of Escherichia coli and Vibrio alginolyticus, respectively. Those complexes work as a H+ and a Na+ channel, respectively and play important roles in torque generation as the stators of the flagellar motors. Although Asp32 of MotB and Asp24 of PomB are believed to function as ion binding site(s), the ion flux pathway from the periplasm to the cytoplasm is still unclear. Conserved residues, Ala39 of MotB and Cys31 of PomB, are located on the same sides as Asp32 of MotB and Asp24 of PomB, respectively, in a helical wheel diagram. In this study, a series of mutations were introduced into the Ala39 residue of MotB and the Cys31 residue of PomB. The motility of mutant cells were markedly decreased as the volume of the side chain increased. The loss of function due to the MotB(A39V) and PomB(L28A/C31A) mutations was suppressed by mutations of MotA(M206S) and PomA(L183F), respectively, and the increase in the volume caused by the MotB(A39V) mutation was close to the decrease in the volume caused by the MotA(M206S) mutation. These results demonstrate that Ala39 of MotB and Cys31 of PomB form part of the ion flux pathway and pore with Met206 of MotA and Leu183 of PomA in the MotA/B and PomA/B stator units, respectively.
著者
Hiroyuki Terashima Akihiro Kawamoto Yusuke V. Morimoto Katsumi Imada Tohru Minamino
出版者
The Biophysical Society of Japan
雑誌
Biophysics and Physicobiology (ISSN:21894779)
巻号頁・発行日
vol.14, pp.191-198, 2017 (Released:2017-12-19)
参考文献数
57
被引用文献数
1 43

The bacterial flagellum is a supramolecular motility machine consisting of the basal body as a rotary motor, the hook as a universal joint, and the filament as a helical propeller. Intact structures of the bacterial flagella have been observed for different bacterial species by electron cryotomography and subtomogram averaging. The core structures of the basal body consisting of the C ring, the MS ring, the rod and the protein export apparatus, and their organization are well conserved, but novel and divergent structures have also been visualized to surround the conserved structure of the basal body. This suggests that the flagellar motors have adapted to function in various environments where bacteria live and survive. In this review, we will summarize our current findings on the divergent structures of the bacterial flagellar motor.
著者
Hiroyuki Terashima Katsumi Imada
出版者
The Biophysical Society of Japan
雑誌
Biophysics and Physicobiology (ISSN:21894779)
巻号頁・発行日
vol.15, pp.173-178, 2018 (Released:2018-08-22)
参考文献数
31
被引用文献数
4

Type III secretion system (T3SS) is a protein translocator complex family including pathogenic injectisome or bacterial flagellum. The inejectisomal T3SS serves to deliver virulence proteins into host cell and the flagellar T3SS constructs the flagellar axial structure. Although earlier studies have provided many findings on the molecular mechanism of the Type III protein export, they were not sufficient to reveal energy transduction mechanism due to difficulties in controlling measurement conditions in vivo. Recently, we developed an in vitro flagellar Type III protein transport assay system using inverted membrane vesicles (IMVs), and analyzed protein export by using the in vitro method. We reproduced protein export of the flagellar T3SS, hook assembly and substrate specificity switch in IMV to a similar extent to what is seen in living cell. Furthermore, we demonstrated that ATP-hydrolysis energy can drive protein transport even in the absence of proton-motive force (PMF). In this mini-review, we will summarize our new in vitro Type III transport assay method and our findings on the molecular mechanism of Type III protein export.