- 著者
-
丸山 淳一
松原 崇充
Joshua G. Hale
森本 淳
- 出版者
- 一般社団法人 日本ロボット学会
- 雑誌
- 日本ロボット学会誌 (ISSN:02891824)
- 巻号頁・発行日
- vol.27, no.5, pp.527-537, 2009 (Released:2011-11-15)
- 参考文献数
- 25
- 被引用文献数
-
3
3
This paper presents a method to learn stepping motions for fall avoidance by reinforcement learning. In order to overcome the curse of dimensionality associated with the large number of degrees of freedom with a humanoid robot, we consider learning on a reduced dimension state space based on a simplified inverted pendulum model. The proposed method is applied to a humanoid robot in numerical simulations, and simulation results demonstrate the feasibility of the proposed method as a mean to acquire appropriate stepping motions in order to avoid falling due to external perturbations.