著者
Hiroaki Kawase Akihiko Murata Ken Yamada Tosiyuki Nakaegawa Rui Ito Ryo Mizuta Masaya Nosaka Shunichi Watanabe Hidetaka Sasaki
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.2021-001, (Released:2020-12-18)
被引用文献数
12

We investigate regional characteristics of future changes in snowfall in Japan under two emission scenarios—RCP2.6 and RCP8.5—using a high-resolution regional climate model with 5 km grid spacing and discuss the influence of changes in atmospheric circulation. The high-resolution model can simulate details of changes in distributions of total snowfall in Japan. Under RCP2.6, the annual total snowfall decreases in most parts of Japan except for Japan's northern island, Hokkaido. In Hokkaido, the winter snowfall increases even under RCP8.5, especially in January and February. The snowfall peak is delayed from early December to late January in Hokkaido. Along the Sea of Japan in eastern Japan, the winter-total snowfall decreases even if the winter mean temperature is below 0°C in the future climate. The different snowfall changes in Hokkaido and on the Sea of Japan side of eastern Japan are caused by precipitation changes in each region. Future changes in atmospheric circulation related to the Aleutian low cause the enhancement and the inhibition of winter precipitation in Hokkaido and the Sea of Japan side of eastern Japan, respectively, contributing to changes in the regional characteristics of snowfall and snow cover in addition to moistening due to atmospheric and ocean warming.
著者
Hiroaki Kawase Akihiko Murata Ken Yamada Tosiyuki Nakaegawa Rui Ito Ryo Mizuta Masaya Nosaka Shunichi Watanabe Hidetaka Sasaki
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.17, pp.1-7, 2021 (Released:2021-01-27)
参考文献数
29
被引用文献数
12

We investigate regional characteristics of future changes in snowfall in Japan under two emission scenarios—RCP2.6 and RCP8.5—using a high-resolution regional climate model with 5km grid spacing and discuss the influence of changes in atmospheric circulation. The high-resolution model can simulate details of changes in distributions of total snowfall in Japan. Under RCP2.6, the annual total snowfall decreases in most parts of Japan except for Japan's northern island, Hokkaido. In Hokkaido, the winter snowfall increases even under RCP8.5, especially in January and February. The snowfall peak is delayed from early December to late January in Hokkaido. Along the Sea of Japan in eastern Japan, the winter-total snowfall decreases even if the winter mean temperature is below 0°C in the future climate. The different snowfall changes in Hokkaido and on the Sea of Japan side of eastern Japan are caused by precipitation changes in each region. Future changes in atmospheric circulation related to the Aleutian low cause the enhancement and the inhibition of winter precipitation in Hokkaido and the Sea of Japan side of eastern Japan, respectively, contributing to changes in the regional characteristics of snowfall and snow cover in addition to moistening due to atmospheric and ocean warming.