著者
Hisaki EITO Masataka MURAKAMI Chiashi MUROI Teruyuki KATO Syugo HAYASHI Hiroshi KUROIWA Masanori YOSHIZAKI
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.88, no.4, pp.625-648, 2010 (Released:2010-10-05)
参考文献数
43
被引用文献数
15 17

During a cold-air outbreak, a broad cloud band is occasionally observed over the Japan-Sea Polar-Airmass Convergence Zone (JPCZ) that forms over the Sea of Japan from the base of the Korean Peninsula to the Japanese Islands. On 14 January 2001, a broad cloud band associated with the JPCZ (JPCZ cloud band) extended in a southeastward direction from the base of the Korean Peninsula to Wakasa Bay, and it stagnated for half a day. The JPCZ cloud band consisted of two cloud regions: one was a long cloud band extending along its southwestern edge (a developed convective cloud band), and the other was the region consisting of cloud bands normal to a wind direction of winter monsoon (transversal cloud bands). The structure and formation mechanism of the transversal cloud bands were examined on the basis of observations (e.g., satellite images, in situ measurement and cloud-pro.ling radar data from an instrumented aircraft and upper-air soundings from observation vessels) and simulation results of a cloud-resolving model with a horizontal resolution of 1 km.The transversal cloud bands had the following characteristic structures; they extended along a northeast-southwest direction, which was parallel to the direction pointed by the vertical shear vector of horizontal wind in the mixed layer, they mainly consisted of convective clouds, which slanted with height toward the down-shear side, and they widened and deepened toward southwest, as the depth of the mixed layer increased. An examination of simulation results presented that the transversal cloud bands were accompanied by roll circulations. The axes of rolls were oriented nearly parallel to the direction of the vertical shear vector in the mixed layer. An analysis of the eddy kinetic energy budget indicated that the roll circulations derived most of its energy from the mean vertical shear and the buoyancy.
著者
Narihiro Orikasa Masataka Murakami Takuya Tajiri Yuji Zaizen Taro Shinoda
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.16, pp.185-191, 2020 (Released:2020-10-17)
参考文献数
22
被引用文献数
2

Aircraft observations were conducted over the eastern mountainous areas of the United Arab Emirates (UAE) in September 2017 to characterize the microphysical properties of diurnal convective clouds. Aerosol particle and cloud condensation nuclei (CCN) measurements indicate that the air mass had a continental nature, resulting in high cloud droplet concentrations of 600-800 cm−3. Two case studies were undertaken to obtain the vertical profiles of hydrometeors up to the cloud top. The ice particle number concentrations in the updraft core were a few particles L−1, which is similar to the primary ice nucleating particle (INP) number concentrations estimated from immersion freezing of high concentration dust particles in the convectively mixed boundary layer. The ice particle number concentrations were several tens of particles L−1 outside the updraft core in the upper levels. INP measurements and the observed cloud microphysical structure suggest that drizzles, frozen via the immersion freezing nucleation of dust particles, formed graupel embryos and ice particles, with concentrations of one to two orders of magnitude greater than those of the primary INPs, which may be generated via secondary ice production and/or ice particle accumulation from primary ice nucleation in clouds with relatively warm cloud top temperatures (approximately −12°C).
著者
Kentaro Araki Masataka Murakami Hiroshi Ishimoto Takuya Tajiri
出版者
(公社)日本気象学会
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.11, pp.108-112, 2015 (Released:2015-08-11)
参考文献数
45
被引用文献数
7

Ground-based microwave radiometer (MWR) has been used for high-frequency retrievals of thermodynamic environments. However, raindrops on the radome of MWR and in the air cause errors in retrievals during precipitation events. Although a recent study has noted that off-zenith observations with neural networks (NN) reduce the retrieval errors, the effect of off-zenith observations with one-dimensional variational (1DVAR) technique, which is known to be more accurate than other methods, has not been studied. We developed a new 1DVAR technique that considers the effect of cloud liquid water. We statistically investigated the accuracy of vertical profiles of atmospheric temperature and water vapor retrieved by NN and 1DVAR techniques by using zenith and off-zenith observation at 15° elevation angle under no-rain and rainy conditions and compared them with results of radiosonde observations. The results showed that the 1DVAR technique outperforms NN and numerical model simulation in the estimation of thermodynamic profiles under no-rain conditions. The results also indicated that the error in retrieved profiles in the low-level troposphere can be reduced by the 1DVAR technique by using off-zenith observations even under rainy conditions with rainfall rate less than 1.0 mm h−1, especially when the environment cannot be accurately reproduced by a numerical model.
著者
Kentaro Araki Hiroshi Ishimoto Masataka Murakami Takuya Tajiri
出版者
(公社)日本気象学会
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.10, pp.57-61, 2014 (Released:2014-04-24)
参考文献数
20
被引用文献数
1 3

We examined proximity soundings at intervals of a few minutes and at distances of less than 20 km from a significant tornadic (SIGTOR) supercell that occurred on 6 May 2012 in Japan. We used a 1-dimensional variational (1DVAR) technique that combined the observations of a ground-based microwave radiometer with outputs from a numerical model. Based on the results of the 1DVAR, several supercell and tornado forecast parameters were calculated and compared with values typical of SIGTOR supercell environments in the United States. One and a half hours before the occurrence of the tornado, the value of convective available potential energy increased significantly to about 1000 J kg−1, a value that is smaller than the typical value in the United States. Low-level vertical wind shear and some composite parameters attained maximum values at the time when the distance to the supercell was the smallest. The vertical wind shear parameters and some composite parameters indicated that the environment fell into the SIGTOR supercell category. This result shows that the thermodynamic environments became unstable before the approach of the supercell, and the low-level vertical wind shear changed locally near the supercell.
著者
Narihiro Orikasa Atsushi Saito Katsuya Yamashita Takuya Tajiri Yuji Zaizen Tzu-Hsien Kuo Wei-Chen Kuo Masataka Murakami
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.16, pp.212-219, 2020 (Released:2020-11-05)
参考文献数
31
被引用文献数
2

Since March 2012, multi-year ground-based observation of atmospheric aerosol particles has been carried out in Tsukuba, Japan to characterize the aerosol particle number concentrations (NCs), air mass origin relevance, and specifically, their cloud condensation nuclei (CCN) and ice nucleating particle (INP) characteristics. The CCN NCs at any water supersaturation (SS) exhibit strong seasonality, being higher in winter and lower in summer; this pattern is similar in the polluted urban environment in East Asia and contrary to that in the Pacific coastal region. The hygroscopicity (κ) is generally high in early autumn and low in early summer, likely due to the seasonal difference of synoptic-scale systems. In contrast, the INP NCs and ice nucleation active surface site density (ns) at defined temperature (−15 to −35°C) and SS (0%-5%) lack clear seasonal influence. The average INP NCs and ns in this study were comparable at warmer temperatures and approximately one order of magnitude lower at colder temperatures, compared with those in other urban locations under limited dust impact. Moreover, the ns values were one to four orders of magnitude lower and exhibited weaker temperature dependence than previous parameterizations on mineral dust particles.
著者
Narihiro Orikasa Masataka Murakami Takuya Tajiri Yuji Zaizen Taro Shinoda
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.2020-032, (Released:2020-08-28)
被引用文献数
2

Aircraft observations were conducted over the eastern mountainous areas of the United Arab Emirates (UAE) in September 2017 to characterize the microphysical properties of diurnal convective clouds. Aerosol particle and cloud condensation nuclei (CCN) measurements indicate that the air mass had a continental nature, resulting in high cloud droplet concentrations of 600-800 cm−3. Two case studies were undertaken to obtain the vertical profiles of hydrometeors up to the cloud top. The ice particle number concentrations in the updraft core were a few particles L−1, which is similar to the primary ice nucleating particle (INP) number concentrations estimated from immersion freezing of high concentration dust particles in the convectively mixed boundary layer. The ice particle number concentrations were several tens of particles L−1 outside the updraft core in the upper levels. INP measurements and the observed cloud microphysical structure suggest that drizzles, frozen via the immersion freezing nucleation of dust particles, formed graupel embryos and ice particles, with concentrations of one to two orders of magnitude greater than those of the primary INPs, which may be generated via secondary ice production and/or ice particle accumulation from primary ice nucleation in clouds with relatively warm cloud top temperatures (approximately −12°C).
著者
WoonSeon Jung Masataka Murakami Taro Shinoda Masaya Kato
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.14, pp.197-202, 2018 (Released:2018-12-21)
参考文献数
19
被引用文献数
1

The Cloud Resolving Storm Simulator (CReSS) model with default parameter settings largely underestimates the diurnal variation of land surface temperature (LST) and hence the formation of summertime diurnal convective clouds over the United Arab Emirates (UAE), which are the primary target of cloud seeding in the UAE. Based on sensitivity experiment results, we optimized a set of land surface parameters to minimize the underestimation of LST and improve the performance of weather simulations over deserts and mountains in the UAE. In the optimized experiment, the difference in LST between Aqua/MODIS observations and CReSS simulation results decreased from 13.0 to 2.3 K under daytime conditions, mainly due to decreased evapotranspiration efficiency and soil thermal diffusivity. Moreover, the difference decreased from 3.8 to 2.0 K under nighttime conditions, mainly due to decreased evapotranspiration efficiency and increased soil temperature at the deepest layer. A decrease in roughness length suppressed the increase in surface air temperature (SAT), contributing to the reproduction of a realistically large difference between LST and SAT during the daytime. The improvement in temperature matching demonstrates that the CReSS model, when used at a 1-km horizontal resolution, accurately simulates the formation of diurnal convective clouds and development of precipitation over deserts in the UAE and low mountains in northeastern UAE.
著者
Narihiro Orikasa Atsushi Saito Katsuya Yamashita Takuya Tajiri Yuji Zaizen Tzu-Hsien Kuo Wei-Chen Kuo Masataka Murakami
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.2020-036, (Released:2020-09-23)
被引用文献数
2

Since March 2012, multi-year ground-based observation of atmospheric aerosol particles has been carried out in Tsukuba, Japan to characterize the aerosol particle number concentrations (NCs), air mass origin relevance, and specifically, their cloud condensation nuclei (CCN) and ice nucleating particle (INP) characteristics. The CCN NCs at any water supersaturation (SS) exhibit strong seasonality, being higher in winter and lower in summer; this pattern is similar in the polluted urban environment in East Asia and contrary to that in the Pacific coastal region. The hygroscopicity (κ) is generally high in early autumn and low in early summer, likely due to the seasonal difference of synoptic-scale systems. In contrast, the INP NCs and ice nucleation active surface site density (ns) at defined temperature (−15 to −35°C) and SS (0%-5%) lack clear seasonal influence. The average INP NCs and ns in this study were comparable at warmer temperatures and approximately one order of magnitude lower at colder temperatures, compared with those in other urban locations under limited dust impact. Moreover, the ns values were one to four orders of magnitude lower and exhibited weaker temperature dependence than previous parameterizations on mineral dust particles.