著者
Kentaro Araki Teruyuki Kato Yasutaka Hirockawa Wataru Mashiko
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.2021-002, (Released:2020-12-24)
被引用文献数
33

This study investigated characteristics of atmospheric environmental fields in the occurrence of quasi-stationary convective bands (QSCBs) in Kyushu, western Japan during the July 2020 heavy rainfall event. We performed case studies of extreme rainfall subevents in the Kumamoto and Kagoshima prefectures on 3-4 July (2020KK) and northern Kyushu on 6-7 July 2020 (2020NK), compared with two heavy rainfall events in northern Kyushu in 2017 and 2018.Nine QSCBs were objectively extracted during the July 2020 heavy rainfall event, causing hourly precipitation amounts exceeding 100 mm twenty times. In 2020KK, the environmental field with extremely large precipitable water due to low-level and middle-level humidity was affected by the upper-level cold airflow, which resulted in favorable condition for the deep convection development. Consequently, the lightning activity became high, and cloud tops were the highest in comparison to previous events. QSCBs in 2020KK and 2020NK were located along a low-level convergence line/zone associated with an inflow that had extremely large water vapor flux on the south side of the mesoscale Baiu frontal depressions. In most of the QSCB cases in 2020, mesoscale depressions were observed and enhanced horizontal winds, which led to extremely large low-level water vapor flux to produce short-term heavy rainfall.
著者
Kentaro Araki Teruyuki Kato Yasutaka Hirockawa Wataru Mashiko
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.17, pp.8-15, 2021 (Released:2021-01-29)
参考文献数
48
被引用文献数
33

This study investigated characteristics of atmospheric environmental fields in the occurrence of quasi-stationary convective bands (QSCBs) in Kyushu, western Japan during the July 2020 heavy rainfall event. We performed case studies of extreme rainfall subevents in the Kumamoto and Kagoshima prefectures on 3-4 July (2020KK) and northern Kyushu on 6-7 July 2020 (2020NK), compared with two heavy rainfall events in northern Kyushu in 2017 and 2018.Nine QSCBs were objectively extracted during the July 2020 heavy rainfall event, causing hourly precipitation amounts exceeding 100 mm twenty times. In 2020KK, the environmental field with extremely large precipitable water due to low-level and middle-level humidity was affected by the upper-level cold airflow, which resulted in favorable condition for the deep convection development. Consequently, the lightning activity became high, and cloud tops were the highest in comparison to previous events. QSCBs in 2020KK and 2020NK were located along a low-level convergence line/zone associated with an inflow that had extremely large water vapor flux on the south side of the mesoscale Baiu frontal depressions. In most of the QSCB cases in 2020, mesoscale depressions were observed and enhanced horizontal winds, which led to extremely large low-level water vapor flux to produce short-term heavy rainfall.
著者
Kentaro Araki Masataka Murakami Hiroshi Ishimoto Takuya Tajiri
出版者
(公社)日本気象学会
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.11, pp.108-112, 2015 (Released:2015-08-11)
参考文献数
45
被引用文献数
7

Ground-based microwave radiometer (MWR) has been used for high-frequency retrievals of thermodynamic environments. However, raindrops on the radome of MWR and in the air cause errors in retrievals during precipitation events. Although a recent study has noted that off-zenith observations with neural networks (NN) reduce the retrieval errors, the effect of off-zenith observations with one-dimensional variational (1DVAR) technique, which is known to be more accurate than other methods, has not been studied. We developed a new 1DVAR technique that considers the effect of cloud liquid water. We statistically investigated the accuracy of vertical profiles of atmospheric temperature and water vapor retrieved by NN and 1DVAR techniques by using zenith and off-zenith observation at 15° elevation angle under no-rain and rainy conditions and compared them with results of radiosonde observations. The results showed that the 1DVAR technique outperforms NN and numerical model simulation in the estimation of thermodynamic profiles under no-rain conditions. The results also indicated that the error in retrieved profiles in the low-level troposphere can be reduced by the 1DVAR technique by using off-zenith observations even under rainy conditions with rainfall rate less than 1.0 mm h−1, especially when the environment cannot be accurately reproduced by a numerical model.
著者
Yasutaka Hirockawa Teruyuki Kato Kentaro Araki Wataru Mashiko
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.16, pp.265-270, 2020 (Released:2020-12-24)
参考文献数
25
被引用文献数
16 37

An extreme rainfall event brought precipitation amounts exceeding 1000 mm in Kyushu district, southwestern Japan, in early July 2020. Especially, an elongated and stagnated mesoscale convective system formed around the Kuma River in central Kyushu district produced localized heavy rainfall with precipitation amounts larger than 600 mm in 13 hours. Characteristics of this extreme rainfall event were investigated using distributions of radar/raingauge-analyzed precipitation amounts (RAP) and statistically compared with those during the warm seasons (April–November) in 2009-2019. The results are shown as follows; (1) nine heavy rainfall areas of linear-stationary type (LS-HRAs) were extracted, (2) spatial and temporal scales of two LS-HRAs among them respectively exceeded 270 km and 10 hours, (3) the maximum RAP exceeding 100 mm in LS-HRAs were comparable to those in previous extreme rainfall events, (4) large accumulated three-hour precipitation amounts exceeding 200 mm were more frequently observed than those in the previous events, and (5) the accumulated five-day precipitation amount integrated around Kyushu Island was the largest since 2009. This study also showed that the large area-integrated precipitation amount was produced mainly from widespread precipitation systems associated with the Baiu front, while the nine LS-HRAs significantly contributed localized heavy rainfall.
著者
Yasutaka Hirockawa Teruyuki Kato Kentaro Araki Wataru Mashiko
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.2020-044, (Released:2020-12-10)
被引用文献数
37

In early July 2020, an extreme rainfall event generated precipitation exceeding 1000 mm in Kyushu district, southwestern Japan. Especially, an elongated and stagnated mesoscale convective system formed around the Kuma River in central Kyushu district produced localized heavy rainfall with precipitation over 600 mm in 13 hours. Characteristics of this extreme rainfall event were investigated using distributions of radar/raingauge-analyzed precipitation amounts (RAP) that were statistically compared with those during the warm seasons (April–November) in 2009-2019. The results are as follows: (1) nine heavy rainfall areas of linear-stationary type (LS-HRAs) were extracted, (2) spatial and temporal scales of two LS-HRAs among the nine exceeded 270 km and 10 hours, respectively, (3) the maximum RAP exceeding 100 mm in LS-HRAs were comparable to those in previous extreme rainfall events, (4) large accumulated three-hour precipitation amounts exceeding 200 mm were more frequently observed than those in previous events, and (5) the accumulated five-day precipitation amount integrated around Kyushu Island was the largest since 2009. This study also showed that a large area-integrated precipitation amount was produced mainly from widespread precipitation systems associated with the Baiu front, while the nine LS-HRAs significantly contributed to localized heavy rainfall.
著者
Kentaro Araki Hiroshi Ishimoto Masataka Murakami Takuya Tajiri
出版者
(公社)日本気象学会
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.10, pp.57-61, 2014 (Released:2014-04-24)
参考文献数
20
被引用文献数
1 3

We examined proximity soundings at intervals of a few minutes and at distances of less than 20 km from a significant tornadic (SIGTOR) supercell that occurred on 6 May 2012 in Japan. We used a 1-dimensional variational (1DVAR) technique that combined the observations of a ground-based microwave radiometer with outputs from a numerical model. Based on the results of the 1DVAR, several supercell and tornado forecast parameters were calculated and compared with values typical of SIGTOR supercell environments in the United States. One and a half hours before the occurrence of the tornado, the value of convective available potential energy increased significantly to about 1000 J kg−1, a value that is smaller than the typical value in the United States. Low-level vertical wind shear and some composite parameters attained maximum values at the time when the distance to the supercell was the smallest. The vertical wind shear parameters and some composite parameters indicated that the environment fell into the SIGTOR supercell category. This result shows that the thermodynamic environments became unstable before the approach of the supercell, and the low-level vertical wind shear changed locally near the supercell.