著者
廣澤 春任 名取 通弘 紀伊 恒男 高野 忠 橋本 樹明 大西 晃 井上 浩三郎 村田 泰宏 三好 一雄 井上 登志夫 野田 隆彦 栗林 豊 田嶋 隆範 近藤 久美子 佐々木 崇志 箭内 英雄 萩野 慎二 小倉 直人 岡本 章 杉山 祥太郎 HIROSAWA Haruto NATORI Michihiro KII Tsuneo TAKANO Tadashi HASHIMOTO Tatsuaki OHNISHI Akira INOUE Kouzaburo MURATA Yasuhiro MIYOSHI Kazuo INOUE Toshio NODA Takahiko KURIBAYASHI Yutaka TAJIMA Takanori KONDOH Kumiko SASAKI Takashi YANAI Hideo HAGINO Shinji OGURA Naoto OKAMOTO Akira SUGIYAMA Shohtaro 中川 栄治 NAKAGAWA Eiji
出版者
宇宙科学研究所
雑誌
宇宙科学研究所報告 (ISSN:02852853)
巻号頁・発行日
vol.101, pp.1-27, 1998-06

科学衛星「はるか」は, スポース VLBI に必要な工学諸技術の実験ならびにスペース VLBI による電波天文観測を行うことを目的として, 1997年2月12日, 宇宙科学研究所の新型ロケット M-V の初号機により打ち上げられた。「はるか」では数々の工学的課題への取り組みがなされたが, それらの中で, ケーブルとメッシュからなる, 有効開口径8cmのパラボラアンテナの軌道上での展開が, 最大の工学的課題であった。打ち上げ約2週間後の2月24日から28日にかけてアンテナ展開実験を行い, 展開に成功した。本稿は「はるか」のアンテナ展開実験を, 衛星システム全体としてのオペレーションの観点から詳述するものである。
著者
大西 晃 林 友直 小林 康徳 飯田 亨 松藤 幸男 加藤 誠一 町田 恒雄 OHNISHI Akira HAYASHI Tomonao KOBAYASHI Yasunori IIDA Toru MATSUFUJI Yukio KATOH Seiichi MACHIDA Tsuneo
出版者
宇宙科学研究所
雑誌
宇宙科学研究所報告. 特集: ハレー彗星探査計画報告 (ISSN:02859920)
巻号頁・発行日
vol.19, pp.57-64, 1987-03

惑星間探査機「さきがけ」, 「すいせい」は, 地球周回衛星の様にアルベドあるいは地球からの赤外放射といった煩わしい熱入力がない代りに, 両探査機がハレーに遭遇するまでに受ける太陽光の受光強度は最高「さきがけ」で周回衛星の約1.5倍, 「すいせい」で約2倍となり, 熱的に変化量の大きい外部環境に曝される。したがって, この様な熱環境の変化に対処するため探査機の熱設計は外部から探査機内部への伝導および放射による熱移動を最小限に抑えるべく, 構体部材や熱制御材など設計上の工夫がなされている。一方, 内部機器の発熱に対してはプラットフォームの裏面に取付けられた4台のサーマルルーバを用いて宇宙空間へ放熱する方法が採用され, 基本的には受動型と能動型を併用した熱制御方法が用いられている。現在まで取得された飛翔データから探査機の温度は予測結果と良く一致しており, また, 「すいせい」の主観測機器であるハレー彗星紫外線撮像装置 (UVI) の CCD センサも予想どうりに冷却され, 有効な観測結果を得ている。この意味で, 探査機の熱設計は満足すべきものであったということができる。ここでは, 探査機の熱設計の概念と飛翔データの解析結果について報告する。

1 0 0 0 OA エバール気球

著者
太田 茂雄 松坂 幸彦 鳥海 道彦 並木 道義 大西 晃 山上 隆正 西村 純 吉田 健二 松島 清穂 OHTA Sigeo MATSUZAKA Yukihiko TORIUMI Michihiko NAMIKI Michiyoshi OHNISHI Akira YAMAGAMI Takamasa NISHIMURA Jun YOSHIDA Kenji MATSUSHIMA Kiyoho
出版者
宇宙科学研究所
雑誌
宇宙科学研究所報告. 特集: 大気球研究報告 (ISSN:02859920)
巻号頁・発行日
vol.34, pp.1-15, 1997-03

低温性能に優れたポリエチレンフイルムの出現により, プラスチック気球による宇宙科学の観測は大幅な進歩を遂げてきた。気球の容積も10^6m^3級のものが実用化され, 2∿3トンの観測機器を搭載して高度40km程度の観測が行われるようになってきた。最近ではその成功率はほぼ100%に近い。ポリエチレン気球は優れた安定性を持っているが, ゼロプレッシャ気球であるために夜間気球内のガス温度が低下して, バラストを投下せねば一定高度を保つ事はできない。バラストの投下量は緯度にもよるが, 日本のような中緯度の上空では一晩に10%弱のバラスト投下が必要である事がこれまでの数多くの実験で確かめられている。したがって数日間の浮遊の後には, バラストは使い果たし, 観測を続けることはできない。この欠点を避けるために提案されたのがスーパープレッシャ気球である。スパープレッシャ気球は内圧のかかった気球で, 夜間気球内のガス温度が低下しても, 内圧が低下するだけで容積は変わらず, 水平浮遊の高度を保つ事ができる。バラストの投下が不必要で, 長時間にわたる観測が可能になる。ただし, 内圧がかかるために気球被膜はゼロプレッシャ気球に比べて, 強度の高いものが必要となり, またガスの漏洩があってはならない。最初に着目されたのはポリエステルフイルム(マィラー)である。ただし, マイラーはポリエチレン気球に比べると低温性能がわるく, また気球製作も難しいので, 現在のところ実用上は5000m^3程度の小型の気球のものにとどまっている。より性能の優れた気球用フイルムの研究は現在世界各国で行われており, 近い将来, 高性能の気球が出現し, 観測項目によっては人工衛星にくらべて極めてコストパーフォーマンスのよい気球が出現するものと考えられている。わが国では, クラレ社のEVALフイルムに着目し, その性質を調べると共に, 実際に気球を試作してその性質を調べている。EVALフイルムの際立った特徴はマイラーとほぼ同じ程度の強度を持つと同時に, 熱接着が可能な事, 特異な赤外線吸収バンドを持っている点である。スーパープレッシャ気球の材料として有望である。また同時に, 赤外線吸収バンドの関係で, 夜間での気球内ガス温度の低下がポリエチレン気球に比べてほぼ半減し, バラストの消費量が著しく節約できる事が期待出来る[1]。1996年の初めに小型のEVAL気球の試験飛翔を行なったが, その結果は良好であった。今後, 更に小型気球の飛翔試験を行い, 大型化して長時間観測のための優れた性能を持つ長時間観測用の気球を完成したいと考えている。ここではまず長時間観測システムの現状を概括する。ついでEVALフイルムについての特性, 特に熱接着法, 低温における接着強度と赤外の吸収バンドについて述べる。最後に昨年行われた, 試験飛翔の結果の解析, ついで将来のEVAL気球の展望について触れる事とした。