著者
Seung-won Choi Kie Kumaishi Reiko Motohashi Harumi Enoki Wiluk Chacuttayapong Tadashi Takamizo Hiroaki Saika Masaki Endo Tetsuya Yamada Aya Hirose Nobuya Koizuka Seisuke Kimura Yaichi Kawakatsu Hiroyuki Koga Emi Ito Ken Shirasu Yasunori Ichihashi
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.39, no.3, pp.323-327, 2022-09-25 (Released:2022-09-25)
参考文献数
28

Agrobacterium-mediated transformation is a key innovation for plant breeding, and routinely used in basic researches and applied biology. However, the transformation efficiency is often the limiting factor of this technique. In this study, we discovered that oxicam-type nonsteroidal anti-inflammatory drugs, including tenoxicam (TNX), increase the efficiency of Agrobacterium-mediated transient transformation. TNX treatment increased the transformation efficiency of Agrobacterium-mediated transformation of Arabidopsis thaliana mature leaves by agroinfiltration. The increase of efficiency by TNX treatment was not observed in dde2/ein2/pad4/sid2 quadruple mutant, indicating that TNX inhibits the immune system mediated by jasmonic acid, ethylene, and salicylic acid against to Agrobacterium. We also found that TNX-treatment is applicable for the transient expression and subcellular localization analysis of fluorescent-tagged proteins in Arabidopsis leaf cells. In addition, we found that TNX increases the efficiency of Agrobacterium-mediated transient transformation of Jatropha. Given that treatment with oxicam compounds is a simple and cost effective method, our findings will provide a new option to overcome limitations associated with Agrobacterium-mediated transformation of various plant species.
著者
Wiluk Chacuttayapong Harumi Enoki Yusei Nabetani Minami Matsui Taichi Oguchi Reiko Motohashi
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.2, pp.247-256, 2021-06-25 (Released:2021-06-25)
参考文献数
58
被引用文献数
3

The development of green energy is important to mitigate global warming. Jatropha (Jatropha curcas L.) is a promising candidate for the production of alternative biofuel, which could reduce the burden on the Earth’s resources. Jatropha seeds contain a large quantity of lipids that can be used to produce biofuel, and the rest of the plant has many other uses. Currently, techniques for plant genetic transformation are extensively employed to study, create, and improve the specific characteristics of the target plant. Successful transformation involves the alteration of plants and their genetic materials. The aim of this study was to generate Jatropha plants that can support biofuel production by increasing their seed size using genes found via the rice FOX-hunting system. The present study improved previous protocols, enabling the production of transgenic Jatropha in two steps: the first step involved using auxins and dark incubation to promote root formation in excised shoots and the second step involved delaying the timing of antibiotic selection in the cultivation medium. Transgenic plants were subjected to PCR analysis; the transferred gene expression was confirmed via RT-PCR and the ploidy level was investigated. The results suggest that the genes associated with larger seed size in Arabidopsis thaliana, which were found using the rice FOX-hunting system, produce larger seeds in Jatropha.
著者
Anung Wahyudi Dinni Ariyani Gang Ma Ryosuke Inaba Chikako Fukasawa Ryohei Nakano Reiko Motohashi
出版者
Japanese Society for Plant Cell and Molecular Biology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.35, no.4, pp.303-312, 2018-12-25 (Released:2018-12-31)
参考文献数
29
被引用文献数
10

In this study, two temperature-induced lipocalin genes SlTIL1 and SlTIL2, and a chloroplastic lipocalin gene SlCHL were isolated from ‘Micro-Tom’ tomato. The coding sequences of SlTIL1, SlTIL2 and SlCHL were 558, 558, and 1002 bp, respectively. By TargetP analysis, no characteristic transit peptides were predicted in the proteins of SlTIL1 and SlTIL2, while a chloroplastic transit peptide was predicted in the protein of SlCHL. The subcellular localization results indicated that SlTIL1 and SlTIL2 proteins were major localized in the plasma membrane, while SlCHL was localized in chloroplast. To understand the function of lipocalins, transgenic tomato over-expressed SlTIL1, SlTIL2 and SlCHL and their virus-induced gene silencing (VIGS) plants were generated. The phenotypes were significantly affected when the SlTIL1, SlTIL2 and SlCHL were over-expressed or silenced by VIGS, which suggested that the three lipocalins played important roles in regulating the growth and development of tomato. In addition, the level of ROS (O2− and H2O2) was low in SlTIL1, SlTIL2 and SlCHL over-expressed plants, while it was high in their silenced plants. The changes in the expression of SODs were consistent with the accumulations of ROS, which indicated that lipocalins might have an important role in abiotic oxidative stress tolerance in tomato plants. Especially SlTIL1 and SlTIL2 are localized around their membranes and protect them from ROS. The results will contribute to elucidating the functions of lipocalin in plants, and provide new strategies to improve the tolerance to abiotic stress in tomato plants.