著者
Jun Nishihira Mie Nishimura Masanori Kurimoto Hiroyo Kagami-Katsuyama Hiroki Hattori Toshiyuki Nakagawa Takato Muro Masuko Kobori
出版者
SOCIETY FOR FREE RADICAL RESEARCH JAPAN
雑誌
Journal of Clinical Biochemistry and Nutrition (ISSN:09120009)
巻号頁・発行日
vol.69, no.2, pp.203-215, 2021 (Released:2021-09-01)
参考文献数
44
被引用文献数
22

Quercetin, a type of flavonoid, is believed to reduce age-related cognitive decline. To elucidate its potential function, we carried out a randomized, double-blind, placebo-controlled, parallel-group comparative clinical trial involving 24-week continuous intake of quercetin-rich onion compared to quercetin-free onion as a placebo. Seventy healthy Japanese individuals (aged 60 to 79 years old) were enrolled in this study. We examined the effect of quercetin-rich onion (the active test food) on cognitive function using the Mini-Mental State Examination, Cognitive Assessment for Dementia iPad version, and Neuropsychiatric Inventory Nursing Home version. The Mini-Mental State Examination scores were significantly improved in the active test food group (daily quercetin intake, 50 mg as aglycone equivalent) compared to the placebo food group after 24 weeks. On the Cognitive Assessment for Dementia iPad version for emotional function evaluation, we found that the scores of the active test food group were significantly improved, suggesting that quercetin prevents cognitive decline by improving depressive symptoms and elevating motivation. On the Neuropsychiatric Inventory Nursing Home version, we found significant effects on reducing the burden on study partners. Taking all the data together, we concluded that 24-week continuous intake of quercetin-rich onion reduces age-related cognitive decline, possibly by improving emotional conditions. Clinical trial register and their clinical registration number: This study was registered with UMIN (approval number UMIN000036276, 5 April 2019).
著者
Jun Nishihira Mie Nishimura Masanori Kurimoto Hiroyo Kagami-Katsuyama Hiroki Hattori Toshiyuki Nakagawa Takato Muro Masuko Kobori
出版者
SOCIETY FOR FREE RADICAL RESEARCH JAPAN
雑誌
Journal of Clinical Biochemistry and Nutrition (ISSN:09120009)
巻号頁・発行日
pp.21-17, (Released:2021-05-21)
参考文献数
44
被引用文献数
22

Quercetin, a type of flavonoid, is believed to reduce age-related cognitive decline. To elucidate its potential function, we carried out a randomized, double-blind, placebo-controlled, parallel-group comparative clinical trial involving 24-week continuous intake of quercetin-rich onion compared to quercetin-free onion as a placebo. Seventy healthy Japanese individuals (aged 60 to 79 years old) were enrolled in this study. We examined the effect of quercetin-rich onion (the active test food) on cognitive function using the Mini-Mental State Examination, Cognitive Assessment for Dementia iPad version, and Neuropsychiatric Inventory Nursing Home version. The Mini-Mental State Examination scores were significantly improved in the active test food group (daily quercetin intake, 50 mg as aglycone equivalent) compared to the placebo food group after 24 weeks. On the Cognitive Assessment for Dementia iPad version for emotional function evaluation, we found that the scores of the active test food group were significantly improved, suggesting that quercetin prevents cognitive decline by improving depressive symptoms and elevating motivation. On the Neuropsychiatric Inventory Nursing Home version, we found significant effects on reducing the burden on study partners. Taking all the data together, we concluded that 24-week continuous intake of quercetin-rich onion reduces age-related cognitive decline, possibly by improving emotional conditions. Clinical trial register and their clinical registration number: This study was registered with UMIN (approval number UMIN000036276, 5 April 2019).
著者
Keita Sugiyama Daisuke Kami Takato Muro Takashi Otani Nobuyasu Seike Sayuri Namiki
出版者
一般社団法人 園芸学会
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.MI-097, (Released:2016-03-01)
被引用文献数
1

We aimed to characterize the inheritance of HEPX (heptachlor exo-epoxide) uptake ability in summer squash (Cucurbita pepo L.). Crosses between ‘Patty Green’, a cultivar that cannot take up HEPX, and ‘Toyohira 2’, a cultivar that can take up high levels of HEPX, were evaluated in this study. The pattern of inheritance for F1 progeny indicated partial dominance since the measured amount of accumulated HEPX was close to that in ‘Toyohira 2’. In the F2 generation, plants segregated into those that did not take up HEPX and those that did take up HEPX at approximately a ratio of 1:5. This segregation pattern was similar to that for the inhibiting gene (dominant suppression of a dominant allele) in the dihybrid; the expected segregation ratio of 3:13 was supported by a chi-square test. Indeed, the I gene suppresses the N gene (non-transporting gene), but the i gene cannot suppress N (II or Ii suppression of NN or Nn). In this case, the genotype of ‘Patty Green’ is proposed to be iiNN and that of ‘Toyohira 2’ to be IInn. Additionally, we proposed three gene models to explain quantitative variation in HEPX transport. The genotypes of ‘Patty Green’ and ‘Toyohira 2’ are presumed to be ABC and abc, respectively. HEPX cannot be taken up unless two or more different dominant genes are present in a plant. Thus, the genotypes can be divided into HEPX non-transporting (Abc:aBc:abC:abc) and HEPX transporting (ABC:ABc:AbC:aBC) classes. Two or three different dominant genes, irrespective of the gene combination, work together to take up HEPX. In this model, the expected segregation ratio of 10 HEPX non-transporting:54 HEPX transporting was supported by a chi-square test. This pattern of inheritance was also supported by the segregation ratio of self-propagated plants (BC1-s) derived from a backcross. Although both of these inheritance models were correct phenotypically, the function of these genes should be clarified to explain the quantitative differences in HEPX uptake.