著者
Atsushi Inagaki Yovita Wangsaputra Manabu Kanda Meral Yücel Naoyuki Onodera Takayuki Aoki
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.16, pp.120-124, 2020 (Released:2020-07-23)
参考文献数
18
被引用文献数
2

The similarity of the turbulence intensity profile with the inner-layer (i.e. from the ground to the top of the logarithmic layer) and the outer-layer (i.e. from the top of the inner layer to top of the boundary layer) scalings were examined for an urban boundary layer using numerical simulations. The simulations consider a developing neutral boundary layer over realistic building geometry with and without a slightly upsloping terrain. The computational domain covers an 19.2 km by 4.8 km and extends up to a height of 1 km, and is resolved by 2-m grids. Several turbulence intensity profiles are defined locally in the computational domain. The inner- and outer-layer scalings work well reducing the scatter of the turbulence intensity within the inner- and outer-layers, respectively, regardless of the surface geometry. Although the main scatters among the scaled profiles are attributed to the mismatch of the parts of the layer (i.e. inner or outer) and the scaling parameters, their behaviours can also be explained by introducing a non-dimensional parameter which consists of the ratio of the inner- and outer-layer parameters for length (the boundary-layer height over the roughness length), or velocity (the external free stream velocity over the friction velocity).
著者
Atsushi Inagaki Yovita Wangsaputra Manabu Kanda Meral Yücel Naoyuki Onodera Takayuki Aoki
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.2020-021, (Released:2020-06-08)
被引用文献数
2

The similarity of the turbulence intensity profile with the inner-layer (i.e. from the ground to the top of the logarithmic layer) and the outer-layer (i.e. from the top of the inner layer to top of the boundary layer) scalings were examined for an urban boundary layer using numerical simulations. The simulations consider a developing neutral boundary layer over realistic building geometry with and without a slightly upsloping terrain. The computational domain covers an 19.2 km by 4.8 km and extends up to a height of 1 km, and is resolved by 2-m grids. Several turbulence intensity profiles are defined locally in the computational domain. The inner- and outer-layer scalings work well reducing the scatter of the turbulence intensity within the inner- and outer-layers, respectively, regardless of the surface geometry. Although the main scatters among the scaled profiles are attributed to the mismatch of the parts of the layer (i.e. inner or outer) and the scaling parameters, their behaviours can also be explained by introducing a non-dimensional parameter which consists of the ratio of the inner- and outer-layer parameters for length (the boundary-layer height over the roughness length), or velocity (the external free stream velocity over the friction velocity).
著者
Tomohiro Takaki Shinji Sakane Takayuki Aoki
出版者
The Iron and Steel Institute of Japan
雑誌
ISIJ International (ISSN:09151559)
巻号頁・発行日
vol.63, no.1, pp.83-90, 2023-01-15 (Released:2023-01-21)
参考文献数
50
被引用文献数
3

Numerical study on the effect of liquid flow on three-dimensional dendrite growth is still a challenging topic. Herein, high-performance phase–field lattice Boltzmann (PF-LB) simulations were performed to investigate the effect of natural convection on dendrite morphology and the possibility for causing fragmentation. Parallel computing in multiple graphics processing units (GPUs) with dynamic load balancing for the block-structured adaptive mesh refinement (AMR) scheme (parallel-GPU AMR) was applied to the PF-LB simulations as a high-performance computing tool in a GPU supercomputer. Parallel-GPU AMR PF-LB simulations showed that the growth of dendrites with natural convection in two and three dimensions were quite different. The dendrite tip velocity increased in the following order: upward buoyancy, no gravity, and downward buoyancy. Downward and upward buoyancy enhanced and restricted the growth of the secondary arms, respectively. The root size of the secondary arms growing from the bottom was drastically affected by the flow direction. However, the dendrite fragmentations were not observed in the present simulations.