著者
Takuya Wada Yuji Noguchi Sachiko Isobe Miyuki Kunihisa Takayuki Sueyoshi Katsumi Shimomura
出版者
一般社団法人 園芸学会
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.MI-142, (Released:2017-01-14)
被引用文献数
11

A strawberry core collection was established based on simple sequence repeat and cleavage amplified polymorphic sequence marker polymorphisms in 119 strawberry cultivars using the “PowerCore” program. The core collection consisted of 19 cultivars. The correlation coefficients for the diversity index were significant between the core collection cultivars and all cultivars. Allele frequencies of each marker allele were not significantly different between the core collection cultivars and all cultivars according to Fisher’s exact test. Cluster analysis indicated that the selected core collection cultivars evenly distributed throughout the multiple clusters and principle component analysis clearly showed major principle components of core collection cultivars distributed widely among those of all cultivars. Furthermore, core collection cultivars tended to harbor minor alleles. These results demonstrated that the core collection cultivars were suitably selected in terms of reflecting the genetic diversity of all strawberry cultivars.
著者
Takuya Wada Hiyori Monden Sachiko Isobe Kenta Shirasawa Takayuki Sueyoshi Chiharu Hirata Miyuki Mori Shiro Nagamatsu Yoshiki Tanaka
出版者
Japanese Society of Breeding
雑誌
Breeding Science (ISSN:13447610)
巻号頁・発行日
pp.20151, (Released:2021-08-20)

Male sterility is one of the reproductive isolation systems in plants and quite useful for F1 seed production. We previously identified three independent quantitative trait loci (QTLs) for male sterility of cultivated strawberry, Here, we identified the specific subgenomes in which these QTLs are located by QTL-seq approach. QTLs qMS4.1, qMS4.2, and qMS4.3 were mapped separately in subgenomes Fvb4-4, Fvb4-3, and Fvb4-1, respectively, in ‘Camarosa’ genome assembly v. 1.0.a1. Candidate regions of qMS4.1 and qMS4.3 were clearly detected around 12–26 Mb in Fvb4-4 and 12–14 Mb in Fvb4-1, respectively; those of qMS4.2 were fragmented in Fvb4-3, which suggests that some scaffolds were incorrectly assembled in Fvb4-3. qMS4.3 was mapped to chr4X1 of ‘Reikou’ genome assembly r2.3, and qMS4.1 and qMS4.2 were both mapped to chr4Av, which indicates that differentiation of the subgenomes in which both QTLs are located was insufficient in ‘Reikou’ r2.3. Although ‘Camarosa’ genome assembly v. 1.0.a1 is an unphased map, which merges homologous chromosomes into one sequence, ‘Reikou’ genome assembly r2.3 is a phased map, which separates homologous chromosomes. QTL mapping to different reference genomes clearly showed the specific features of each reference genome, and that using different kinds of reference map could accelerate fine mapping and map-based cloning of certain genes of cultivated strawberry.