著者
Satoshi Iizuka Ryuichi Kawamura Hisashi Nakamura Toru Miyama
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.17A-004, (Released:2020-12-21)
被引用文献数
11

Typhoon Hagibis (2019) caused widespread flooding and damage over eastern Japan. The associated rainfall maxima were primarily observed on the windward mountain slopes along with the west of the leading edge of a low-level front. Concomitantly, a significant positive value in sea surface temperature anomalies (SSTAs) was observed in association with an ocean eddy over the Oyashio region, together with anomalous warmth over the entire western North Pacific. The present study examines the role of the SSTAs in the rainfall distribution associated with Hagibis, to deepen our understanding of the influence of the midlatitude ocean on tropical cyclones and associated rainfall. Our sensitivity experiments demonstrate that the observed warm SSTAs had the potential to displace the rainfall caused by Hagibis inland and thereby acted to increase precipitation along the Pacific coast of northeastern Japan. Our results suggest that midlatitude SSTAs on ocean-eddy scales can also influence the synoptic-scale atmospheric front and associated heavy rainfall.
著者
Satoshi Iizuka Ryuichi Kawamura Hisashi Nakamura Toru Miyama
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.17A, no.Special_Edition, pp.21-28, 2021 (Released:2021-02-23)
参考文献数
19
被引用文献数
11

Typhoon Hagibis (2019) caused widespread flooding and damage over eastern Japan. The associated rainfall maxima were primarily observed on the windward mountain slopes along with the west of the leading edge of a low-level front. Concomitantly, a significant positive value in sea surface temperature anomalies (SSTAs) was observed in association with an ocean eddy over the Oyashio region, together with anomalous warmth over the entire western North Pacific. The present study examines the role of the SSTAs in the rainfall distribution associated with Hagibis, to deepen our understanding of the influence of the midlatitude ocean on tropical cyclones and associated rainfall. Our sensitivity experiments demonstrate that the observed warm SSTAs had the potential to displace the rainfall caused by Hagibis inland and thereby acted to increase precipitation along the Pacific coast of northeastern Japan. Our results suggest that midlatitude SSTAs on ocean-eddy scales can also influence the synoptic-scale atmospheric front and associated heavy rainfall.
著者
Toru Miyama Takuya Hasegawa
出版者
(公社)日本気象学会
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.10, pp.5-9, 2014 (Released:2014-02-06)
参考文献数
24
被引用文献数
3 9

A regional atmospheric model was employed to demonstrate that a strong westerly wind, which occurred around December 2001 prior to the 2002/03 El Niño event, was enhanced by sea surface temperature gradient along the equator in the western Pacific warm pool region. Furthermore, a regional oceanic model was employed to demonstrate that the enhanced westerly wind event substantially increased oceanic Kelvin wave response along the equatorial Pacific Ocean.