著者
Kimitoshi Sakaguchi Chisato Isobe Kazuyoshi Fujita Yoshihiro Ozeki Taira Miyahara
出版者
The Japanese Society for Horticultural Science
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.UTD-100, (Released:2019-07-17)
被引用文献数
2

Modern molecular biology techniques have enabled the generation of novel flower colors. Standard cultivated varieties of delphinium have blue flowers as a result of the biosynthesis and accumulation of delphinidin-based anthocyanins. Some cultivars have pink flowers due to the biosynthesis and accumulation of pelargonidin-based anthocyanins. The biosynthetic pathway of the latter becomes active due to the inactivation of flavonoid 3',5'-hydroxylase. Cyanidin-based red-purple flowers have not been identified to date in delphiniums because these species do not express the flavonoid 3'-hydroxylase gene. However, in our previous work, we identified expression of the flavonoid 3'-hydroxylase gene in a wild delphinium (Delphinium zalil) that accumulates quercetin 3-glycoside. D. zalil lacks the anthocyanidin synthase, the key enzyme to produce anthocyanins, so the flowers do not contain any anthocyanins. Here, we report the use of conventional breeding to introduce cyanidin biosynthesis into delphiniums. We introduced the flavonoid 3'-hydroxylase gene of D. zalil into D. cardinale by hybridization breeding, causing accumulation of cyanidin-based anthocyanin. In the hybrid plants, flavonoid 3'-hydroxylase was transcribed and a cyanidin-based anthocyanin was biosynthesized, generating novel purple-red flowers. Greater understanding of the anthocyanin biosynthetic genes expressed in wild species will benefit the development of breeding strategies to generate novel flower colors in cultivars of high horticultural value.
著者
Hiroaki Kodama Taira Miyahara Taichi Oguchi Takashi Tsujimoto Yoshihiro Ozeki Takumi Ogawa Yube Yamaguchi Daisaku Ohta
出版者
Food Safety Commission, Cabinet Office, Government of Japan
雑誌
Food Safety (ISSN:21878404)
巻号頁・発行日
vol.9, no.2, pp.32-47, 2021 (Released:2021-06-25)
参考文献数
86
被引用文献数
9

Grafting of non-transgenic scion onto genetically modified (GM) rootstocks provides superior agronomic traits in the GM rootstock, and excellent fruits can be produced for consumption. In such grafted plants, the scion does not contain any foreign genes, but the fruit itself is likely to be influenced directly or indirectly by the foreign genes in the rootstock. Before market release of such fruit products, the effects of grafting onto GM rootstocks should be determined from the perspective of safety use. Here, we evaluated the effects of a transgene encoding β-glucuronidase (GUS) on the grafted tomato fruits as a model case. An edible tomato cultivar, Stella Mini Tomato, was grafted onto GM Micro-Tom tomato plants that had been transformed with the GUS gene. The grafted plants showed no difference in their fruit development rate and fresh weight regardless of the presence or absence of the GUS gene in the rootstock. The fruit samples were subjected to transcriptome (NGS-illumina), proteome (shotgun LC-MS/MS), metabolome (LC-ESI-MS and GC-EI-MS), and general food ingredient analyses. In addition, differentially detected items were identified between the grafted plants onto rootstocks with or without transgenes (more than two-fold). The transcriptome analysis detected approximately 18,500 expressed genes on average, and only 6 genes were identified as differentially expressed. Principal component analysis of 2,442 peaks for peptides in proteome profiles showed no significant differences. In the LC-ESI-MS and GC-EI-MS analyses, a total of 93 peak groups and 114 peak groups were identified, respectively, and only 2 peak groups showed more than two-fold differences. The general food ingredient analysis showed no significant differences in the fruits of Stella scions between GM and non-GM Micro-Tom rootstocks. These multiple omics data showed that grafting on the rootstock harboring the GUS transgene did not induce any genetic or metabolic variation in the scion.
著者
Takashi Tsujimoto Ryoko Arai Taichi Yoshitomi Yutaka Yamamoto Yoshihiro Ozeki Takashi Hakamatsuka Nahoko Uchiyama
出版者
The Pharmaceutical Society of Japan
雑誌
Chemical and Pharmaceutical Bulletin (ISSN:00092363)
巻号頁・発行日
pp.c21-00180, (Released:2021-05-21)
参考文献数
19
被引用文献数
9

Citrus-type crude drugs (CCDs) are commonly used to formulate decoctions in Kampo formula (traditional Japanese medicine). Our previous study reported metabolomic analyses for differentiation of the methanol extracts of Citrus-type crude drugs (CCDs) using UHPLC/MS, and 13C- and 1H-NMR. The present study expanded the scope of its application by analyzing four CCD water extracts (Kijitsu, Tohi, Chimpi, and Kippi); these CCDs are usually used as decoction ingredients in the Kampo formula. A principal component analysis score plot of processed UPLC/MS and NMR analysis data indicated that the CCD water extracts could be classified into three groups. The loading plots showed that naringin and neohesperidin were the distinguishing components. Three primary metabolites, α-glucose, β-glucose, and sucrose were identified as distinguishing compounds by NMR spectroscopy. During the preparation of CCD dry extracts, some compounds volatilized or decomposed. Consequently, fewer compounds were detected than in our previous studies using methanol extract. However, these results suggested that the combined NMR- and LC/MS-based metabolomics can discriminate crude drugs in dried water extracts of CCDs.
著者
Takuma Yoshioka Yunosuke Itagaki Yutaka Abe Nobuo Kawahara Yukihiro Goda Yoshihiro Ozeki Akiyo Yamada
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.1, pp.183-186, 2021-03-25 (Released:2021-03-25)
参考文献数
15
被引用文献数
1

A stable salt-tolerant cell-suspension culture of Alluaudiopsis marnieriana was established, and intracellular compounds that accumulated under salt-stress conditions were investigated. HPLC/MS, and NMR analyses indicated that enhanced accumulation of coniferin was found during the growth phase in medium containing 150 mM NaCl. Coniferin or its derivatives may play an important role in salt-tolerance mechanisms in this plant.