著者
Masanori KOBAYASHI Akiko SAITO Yoshikazu TANAKA Masaki MICHISHITA Masato KOBAYASHI Mami IRIMAJIRI Takeharu KANEDA Kazuhiko OCHIAI Makoto BONKOBARA Kimimasa TAKAHASHI Tatsuya HORI Eiichi KAWAKAMI
出版者
公益社団法人 日本獣医学会
雑誌
Journal of Veterinary Medical Science (ISSN:09167250)
巻号頁・発行日
vol.79, no.4, pp.719-725, 2017 (Released:2017-04-05)
参考文献数
32
被引用文献数
23

Canine prostate cancer (cPCa) is an untreatable malignant neoplasm resulting in local tissue invasion and distant metastasis. MicroRNAs (miRs) are small non-coding RNAs that function as oncogenes or tumor suppressors. The purpose of this study was to characterize the expression of miRs that are altered in cPCa tissue. The expression levels of 277 mature miRs in prostatic tissue (n=5, respectively) were compared between the non-tumor and tumor groups using real-time PCR. Five miRs (miR-18a, 95, 221, 222 and 330) were up-regulated, but 14 miRs (miR-127, 148a, 205, 299, 329b, 335, 376a, 376c, 379, 380, 381, 411, 487b and 495) were down-regulated specifically in cPCa (P<0.05). These miRs have potential use as early diagnosis markers for cPCa and in miR-based therapy.
著者
Masanori KOBAYASHI Akiko SAITO Yoshikazu TANAKA Masaki MICHISHITA Masato KOBAYASHI Mami IRIMAJIRI Takeharu KANEDA Kazuhiko OCHIAI Makoto BONKOBARA Kimimasa TAKAHASHI Tatsuya HORI Eiichi KAWAKAMI
出版者
公益社団法人 日本獣医学会
雑誌
Journal of Veterinary Medical Science (ISSN:09167250)
巻号頁・発行日
pp.16-0279, (Released:2017-02-27)
被引用文献数
23

Canine prostate cancer (cPCa) is an untreatable malignant neoplasm resulting in local tissue invasion and distant metastasis. MicroRNAs (miRs) are small non-coding RNAs that function as oncogenes or tumor suppressors. The purpose of this study was to characterize the expression of miRs that are altered in cPCa tissue. The expression levels of 277 mature miRs in prostatic tissue (n=5, respectively) were compared between the non-tumor and tumor groups using real-time PCR. Five miRs (miR-18a, 95, 221, 222 and 330) were up-regulated, but 14 miRs (miR-127, 148a, 205, 299, 329b, 335, 376a, 376c, 379, 380, 381, 411, 487b and 495) were down-regulated specifically in cPCa (P<0.05). These miRs have potential use as early diagnosis markers for cPCa and in miR-based therapy.
著者
Nobutomo Ikarashi Naoki Ogiue Eri Toyoda Marina Nakamura Risako Kon Yoshiki Kusunoki Takashi Aburada Makoto Ishii Yoshikazu Tanaka Yoshiaki Machida Wataru Ochiai Kiyoshi Sugiyama
出版者
The Pharmaceutical Society of Japan
雑誌
Biological and Pharmaceutical Bulletin (ISSN:09186158)
巻号頁・発行日
vol.36, no.10, pp.1615-1621, 2013-10-01 (Released:2013-10-01)
参考文献数
46
被引用文献数
12 14

Aquaporin-3 (AQP3) plays an important role in maintaining the normal water content of the skin. Previously, we revealed that the expression of cutaneous AQP3 increased following oral administration of Gypsum fibrosum (main component: CaSO4) to mice. The purpose of this study is to elucidate the mechanism by which Gypsum fibrosum increases the expression of cutaneous AQP3 in a keratinocyte cell line. Gypsum fibrosum or CaSO4 was added to keratinocytes, and the expression level of AQP3, the Ca concentration, the activity of protein kinase C (PKC), and the degrees of phosphorylation of both extracellular signal-regulated kinase (ERK) and cAMP response element binding protein (CREB) were measured. The mRNA and protein expression levels of AQP3 increased significantly 6 h-post addition of Gypsum fibrosum. In keratinocytes treated with Gypsum fibrosum, increases in the concentration of intracellular Ca, PKC activity, and the phosphorylation of ERK and CREB were observed. Pre-treatment with GF109203X, a PKC inhibitor, suppressed the mRNA expression levels of AQP3. Similarly to treatment with Gypsum fibrosum, the addition of CaSO4 led to the same observations in keratinocytes. It is hypothesized that Gypsum fibrosum causes an increase in the intracellular Ca concentration, PKC activity, and the phosphorylation levels of ERK and CREB, resulting in increased AQP3 expression in keratinocytes. In addition, it is possible that the effect of Gypsum fibrosum is attributable to CaSO4, based on the results demonstrating that the mechanisms of action of Gypsum fibrosum and CaSO4 were nearly identical.
著者
Shinzo Tsuda Yuko Fukui Noriko Nakamura Yukihisa Katsumoto Keiko Yonekura-Sakakibara Masako Fukuchi-Mizutani Kazuyuki Ohira Yukiko Ueyama Hideo Ohkawa Timothy A. Holton Takaaki Kusumi Yoshikazu Tanaka
出版者
日本植物細胞分子生物学会
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.21, no.5, pp.377-386, 2004 (Released:2005-06-03)
参考文献数
34
被引用文献数
35 76

Petunia flower colors are mainly due to flavonoids. The flower color of commercial varieties of Petunia hybrida was successfully modified by the suppression of endogenous flavonoid biosynthetic genes, the expression of a hetelorogous flavonoid biosynthetic gene, and the combination of both. Flower color changed from purple to almost white or from purple to red by the suppression of the endogenous gene expression, from red to orange by the down-regulation of the flavonoid 3′-hydroxylase gene and the expression of the rose dihydroflavonol 4-reductase gene, and from violet to pale violet by the expression of the flavonol synthase or flavone synthase gene. These results clearly indicate the usefulness of metabolic engineering of the flavonoid biosynthetic pathway to modify flower color. Only a few of the transgenic petunia exhibited phenotypic stability. For commercialisation, it is necessary to generate many independent transgenic lines, select elite lines with stable phenotypes and maintain them in tissue culture.