著者
藤間 達哉 Matthew Logan Justin Du Bois
出版者
天然有機化合物討論会実行委員会
雑誌
天然有機化合物討論会講演要旨集 56 (ISSN:24331856)
巻号頁・発行日
pp.Oral26, 2014 (Released:2018-07-19)

【研究背景】 Batrachotoxin(1)はコロンビア産矢毒蛙から単離されたステロイドアルカロイドであり、電位依存性ナトリウムチャネル(Nav)に選択的に作用する強力な神経毒である(Figure 1)1)。Navは興奮性神経細胞における活動電位の発生と伝導において中心的な役割を果たし、てんかん、不整脈、無痛覚症等の疾患にも関わりが深いことから、Navを標的分子に含む医薬品が数多く開発されてきた。しかし、巨大な膜タンパク質であるNavと小分子との相互作用はX線結晶構造が解明されていない現状では予測が困難であり、合理的なデザインによる医薬品創出の障害となっている。本天然物はNavに結合することで、不活性化機構の消失、活性化の膜電位依存性の変化、シングルチャネルコンダクタンスの低下、イオン選択性の変化等、独特かつ多様な機能変化をもたらすことから、古くから研究対象とされてきた2)。しかし、乱獲によって産生する矢毒蛙が絶滅危惧種に指定されたことでその供給が困難となり、Navに機能変化をもたらす詳細な作用機序は明らかとなっていない。このような背景に加え、ステロイド骨格にホモモルホリン環が形成された特徴的な縮環構造は他に類を見ず、合成化学における格好の研究対象とされてきた。生合成前駆体であるbatrachotoxinin A(2)のprogesteroneからの半合成がWehrliら(1972年)により3)、全合成が岸ら(1998年)により報告されたが4)、いずれも40工程を越える長大な合成経路であり、天然物やその類縁体供給に活用するには十分なものではなかった。当研究室においても合成研究が行われてきたものの、CDE環を有する中間体の合成経路は既に30段階程度となり、合成を継続するのは合理的ではなかった5)。そこで、合成経路を一新し、batrachotoxin(1)の実用的な合成経路の開発を目指した研究を行った。【合成計画】 Batrachotoxin(1)はbatrachotoxinin A(2, Figure 1)を経て合成することとした(Scheme 1)。その17位−20位炭素間の結合はケトンを足掛かりとした適切なカップリング反応、11位の水酸基はケトンの立体選択的還元、窒素原子はアルデヒドに対する還元的アミノ化反応を用いることでそれぞれ構築できると考え、ケトアルデヒド3を重要中間体として設定した。さらに、C環のケトン部位をアルケンの酸化的開裂により得ることとし、C 環をアルキン部位とアルケン部位を用いて環化異性化反応やラジカル環化反応等により構築できると考えることで、エンイン4をその前駆体とした。エンイン4はアルケニルブロミド5から調製した有機金属種を用い、予め17位炭素の立体 化学が制御されたエノン6に対する立体選択的な1,2-付加反応によって合成可能であると考えた。【ユニットの合成】 Scheme 1に示したエノン6、アルケニルブロミド5に相当するユニットの合成を行った(Scheme 2)。文献既知の方法により2,5-ジメトキシテトラヒドロフラン(7)から調製した光学的に純粋なアルコール8を用いてエノン10の合成を行った6)。まず、アルコール8のアルケン部位をエポキ(View PDFfor the rest of the abstract.)
著者
渡邉 瑞貴 領田 優太 浅野 理沙 Khamb Bilon 薄田 晃佑 飯田 圭介 岩田 淳 佐藤 慎一 酒井 寿郎 長澤 和夫 上杉 志成
出版者
天然有機化合物討論会実行委員会
雑誌
天然有機化合物討論会講演要旨集 56 (ISSN:24331856)
巻号頁・発行日
pp.Oral15, 2014 (Released:2018-07-19)

1. 背景 現代人を悩ます生活習慣病の一つ、脂質異常症(高脂血症)は肥満など多くの疾病の起因となる。それら多数の疾病の予防・治療のためにも、脂質生合成機構の制御と解析は重要な課題である。 脂質生合成において、転写調節因子SREBP(Sterol regulatory element- binding protein)は中心的な役割を担う(図1)1。小胞体膜貫通型タンパク質として存在する前駆体SREBPは、キャリアータンパク質SCAP(SREBP cleavage-activating protein)と複合体を形成している。この複合体は、脂質レベルが低下すると小胞体からゴルジ体に輸送される。ゴルジ体において前駆体SREBPは酵素による二度の切断を受けて活性型となる。活性型SREBPは核に移行し、転写因子として脂質生合成に関する遺伝子群の発現を亢進する。ステロールや脂肪酸などの脂質類が産生される。 SREBPの活性化は内因性物質であるステロールによって厳密に制御されている。ステロール過多になると、ステロールはSCAPに直接作用し、SREBP/SCAP複合体の小胞体からゴルジ体への輸送を阻害する。脂質生合成は種々の複雑な制御を受けることが知られており、ステロール以外の内因性物質による直接的なSREBP活性化調節機構の存在が予想される。しかし、その詳細は未だ不明な点が残る。 私たちの研究室が化合物ライブラリーから見出した合成小分子ファトスタチン(1, 図2)は、ヒト細胞内でSREBPの活性化を選択的に阻害して脂質生合成を抑制する2,3。ファトスタチンは、SREBP活性化を阻害する初めての非ステロール合成化合物となった。さらに私たちの研究室は、ファトスタチンを誘導体展開し、ファトスタチンよりも10倍阻害活性に優れ、経口投与可能なFGH10019(2)も報告した4。一連のケミカルバイオロジー研究によって、ファトスタチンはステロールと同じSCAPを直接の生体内標的とするが、ステロールとは異なる部位に作用することを示した。この結果は、ファトスタチン様に作用する、ステロール以外の内因性物質の存在の可能性を示唆する。2. 新たなSREBP制御天然化合物の発見 以上をふまえ私たちは、SREBP活性化に関わる新規内因性物質の探索を目的に、280種の脂質化合物を新たにスクリーニングした。その結果、細胞内でSREBPの活性化を阻害する複数の内因性脂質化合物が見出された。これら見出された化合物類は、濃度依存的にSREBPの活性化を阻害することがわかった。さらに、ある一連の内因性天然脂質化合物類は、ステロールと同様にSREBPの小胞体からゴルジ体への輸送段階で活性化を阻害するが、その作用メカニズムはステロールと異なることが示唆された(図3)。CHO-K1細胞をステロールで処理すると活性型SREBPが消失し、前駆体SREBPが蓄積する。一方、内因性天然脂質化合物Aで処理すると、活性型および前駆体両方のSREBPが減少した。これら新たに見出した内因性脂質化合物類とSREBPとの直接的な関係について、現在のところ報告はない。これら脂質化合物はSREBP活性化を制御する新たな内因性物質の可能性がある。3. SREBP制御天然化合物の作用メカニズムの解明研究 スクリーニング(View PDFfor the rest of the abstract.)
著者
寺山 直樹 中曽根 和樹 牛嶋 将大 安井 英子 宮下 正昭 南雲 紳史
出版者
天然有機化合物討論会実行委員会
雑誌
天然有機化合物討論会講演要旨集 56 (ISSN:24331856)
巻号頁・発行日
pp.Poster60, 2014 (Released:2018-07-19)

1. 序論抗がん剤による化学療法で深刻な問題となっている一つに多剤耐性がある。抗がん剤治療を続けていくうちに、多くの抗がん剤が効かなくなるというもので、ABCトランスポーター、アポトーシス抑制、細胞生存シグナルなどと関係するいくつかの機構が知られている。瀬戸らは新規多剤耐性克服活性物質の探索研究を続ける中で、1991年に埼玉県秩父周辺の土壌から採取したSaccharothrixide sp. CF24の発酵培地よりSekothrixideを見出した。1) この化合物はコルヒチン耐性を獲得したKB細胞(KB-C2)に対して、コルヒチンとともに相乗的な阻害活性(IC50 = 6.5 mg/mL)を示した。その構造は4つのメチル基を有する14員環マクロラクトンと、C13位から分岐した7連続不斉中心を持つ側鎖からなる (Fig. 1)。最初の論文では二次元構造のみが報告されていたが、第38回の本討論会において2のような立体構造が示された。2) 側鎖部の7連続不斉中心の相対配置は、天然物を化学分解することで得られたC11-C21断片の詳細なNMR解析により決定している。一方、ラクトン環上に関する立体配置の決定方法は、計算化学によるコンフォメーション解析が利用されており曖昧さが残っていた。このような背景のもと、我々はその化学構造と生理活性に興味を持ち、閉環メタセシス反応によるマクロライド構築を基盤とする合成研究を検討してきた(Scheme 1)。その結果、Sekothrixideの初の全合成を達成することができ、また真の立体構造は2ではなく4, 6, 8位の配置が全て逆の構造1であることを見出したのでここに報告する。3) 2. セグメントC1-C10の合成最初に我々は、瀬戸らが提唱していた構造2を目的物質として合成検討を行った。まずマクロラクトン部に相当するセグメントC1-C10 (14)の合成を進めた(Scheme 2)。既知のアルコール34) をIBX酸化後、光学活性アミドを組み込んだHorner-Emmons反応に付し共役アミド5へ導いた。接触還元により6とした後、そのメチル化反応を試みたところ、収率、選択性、ともに良好な結果で7が得られた。化合物7はLiBH4による還元に付し、生じた一級水酸基をTBDPS基で保護することでシリルーテル8へ導いた。化合物8のPMB基の脱保護後、ヨウ素/Ph3Pの条件でヨウ素化し9を得た。これにTHF溶媒中-20℃、イソプロペニルグリニャール試薬4.5当量と、ヨウ化銅を1.5当量用いイソプロペニル基を導入し10を得た。化合物10はTBAF処理によりTBDPS基を脱保護しアルコール11へ変換した。ちなみに、鏡像異性体のent-11は既知物質で、そのNMRは我々が合成したものとよく一致していた。また、ent-11の比旋光度は-26.4 (CHCl3)であるのに対し、合成した11は+33.9 (CHCl3)であった。次に、化合物11のIBX酸化を行い、得られたアルデヒド12に対して向山アルドール反応を行った。その結果、カップリングが進行すると同時に、生じた水酸基にシリル基が移り良好な収率で13が得られた。さらに、13をアルカリ加水分解に付しセグメントC1-C10 (14)を合成した。3. セグメントC11-C21の合成次に、セグメントC11-C21 (25)の合成を以下のように行った。既知の(View PDFfor the rest of the abstract.)