著者
齋藤 政彦 山田 泰彦 太田 泰広 望月 拓郎 吉岡 康太 Rossman W.F 野海 正俊 大仁田 義裕 三井 健太郎 佐野 太郎 小池 達也
出版者
神戸大学
雑誌
基盤研究(S)
巻号頁・発行日
2017-05-31

本年度は、代数曲線上定義された放物接続や放物Higgs束のモジュライ空間の代数幾何学的構造の研究を継続して行った。また、付随するリーマン・ヒルベルト対応の幾何学、モノドロミー保存変形の微分方程式のパンルヴェ性などについても研究を行った。特に、現在残された一般の分岐的不確定特異点を持つ場合のモジュライ問題の設定、モジュライ空間の構成、次元公式、非特異性、シンプレクテック構造などについては、稲場がすでにプレプリント「Moduli Spacs of irregular singular parbolic connections of generic ramified type on a smooth projctive curve」において、肯定的な解答を得ている。また、確定特異点でスペクトル型を固定したときのモジュライ空間の構成、モノドロミー保存変形に関わる方程式のパンルヴェ性の証明についての論文を出版する予定である。岩木・小池は位相的漸化式とWKB解析の関係において、具体例による研究を進め、新しい例を構成しつつある。名古屋は、第6q差分パンルヴェ方程式のタウ関数がq共形ブロックでフーリエ展開で得られるという結果を得て、論文を発表した。また、この分野の国際研究集会を11月に神戸大学で開催した。望月は、円周と複素直線上の特異モノポールについて、色々な角度から研究し、新たな結果を得た。大仁田は、微分幾何学と可積分系の関係、特に調和写像の分類問題を研究した。山田は、多変数モノドロミー保存変形について、パンルヴェ方程式の退化や、パデ法の応用研究を行った。入谷はトーリック軌道体の標準類を保たない双有理変形の下での量子コホモロジーD加群の変化を研究した。また高種数グロモフ・ウイッテンポテンシャルの保型性を調べた。細野は、カラビ・ヤウ多様体のミラー対称性について詳細な研究を行った。

言及状況

Wikipedia (1 pages, 1 posts, 1 contributors)

収集済み URL リスト