著者
丸野 健一 太田 泰広 高橋 大輔
出版者
早稲田大学
雑誌
基盤研究(C)
巻号頁・発行日
2015-04-01

大振幅非線形波動を記述する偏微分方程式の解の構造を保存する差分スキームの構築法の確立とその数値計算法への応用に向けて、これまで離散化に成功していなかったタイプの非線形波動方程式(多成分系、3次元渦糸問題、水面波の数理モデル、水の土壌への浸透を記述する数理モデルなど)の解の構造を保存する離散化を行い、様々な方程式に対して自己適合移動格子スキームを構築することに成功した。さらに、それらを用いた数値計算の精度の検証を行い、自己適合移動格子スキームの有効性を示した。また、自己適合移動格子スキームと離散微分幾何学との関係についても詳しく調べた。
著者
中村 佳正 江口 真透 辻本 諭 小原 敦美 太田 泰広 広田 良吾
出版者
京都大学
雑誌
基盤研究(B)
巻号頁・発行日
2000

中村は正定値行列の空間上の算術平均演算と調和平均演算の繰り返しによって,与えられた正定値行列の平方根行列に2次収束する算術調和平均のアルゴリズムを定式化した.このアルゴリズムは情報幾何学的には空間の2点間の互いに双対な測地線上の中点をたどる算法という意味をもつ.小原は算術調和平均のアルゴリズムが定義される正定値行列空間を対称錘の空間上に拡張し,これらの平均演算が測地線の中点を定めるなど対称錘の空間の情報幾何構造を解明した.正定値が成り立たない場合,算術調和平均のアルゴリズムは一般に収束しない.近藤と中村は,算術調和平均のアルゴリズムの漸化式の一般項が行列式表示されることを発見した.可解なロジスティックマップについても同様な表示が見つかった.さらに,この表本式と系の可解性に基づいて,不変測度と積分計算によらずに,系のLyapunov指数が正となることを示した.さらに,中村と辻本はアルゴリズム機能をもつ離散時間可積分系のプロトタイプである離散時間戸田方程式(qdアルゴリズム)の並列化の研究を開始した.まず,2個のプロセッサーによる分散メモリ型並列計算機システムを構築し,qd表を左右に2分割してそれぞれのプロセッサーで並列に計算させることに成功した.この並列化によって3重対角行列の固有値計算時間が約60%に減少した.さらに,qd表の特性に注目して一部を斜め45度に分割することでさらに並列化効率が改善されることを確認した.以上の研究は可積分によるアルゴリズム開発の今後の研究において有用になるものと考えられる.
著者
齋藤 政彦 山田 泰彦 太田 泰広 望月 拓郎 吉岡 康太 Rossman W.F 野海 正俊 大仁田 義裕 三井 健太郎 佐野 太郎 小池 達也
出版者
神戸大学
雑誌
基盤研究(S)
巻号頁・発行日
2017-05-31

本年度は、代数曲線上定義された放物接続や放物Higgs束のモジュライ空間の代数幾何学的構造の研究を継続して行った。また、付随するリーマン・ヒルベルト対応の幾何学、モノドロミー保存変形の微分方程式のパンルヴェ性などについても研究を行った。特に、現在残された一般の分岐的不確定特異点を持つ場合のモジュライ問題の設定、モジュライ空間の構成、次元公式、非特異性、シンプレクテック構造などについては、稲場がすでにプレプリント「Moduli Spacs of irregular singular parbolic connections of generic ramified type on a smooth projctive curve」において、肯定的な解答を得ている。また、確定特異点でスペクトル型を固定したときのモジュライ空間の構成、モノドロミー保存変形に関わる方程式のパンルヴェ性の証明についての論文を出版する予定である。岩木・小池は位相的漸化式とWKB解析の関係において、具体例による研究を進め、新しい例を構成しつつある。名古屋は、第6q差分パンルヴェ方程式のタウ関数がq共形ブロックでフーリエ展開で得られるという結果を得て、論文を発表した。また、この分野の国際研究集会を11月に神戸大学で開催した。望月は、円周と複素直線上の特異モノポールについて、色々な角度から研究し、新たな結果を得た。大仁田は、微分幾何学と可積分系の関係、特に調和写像の分類問題を研究した。山田は、多変数モノドロミー保存変形について、パンルヴェ方程式の退化や、パデ法の応用研究を行った。入谷はトーリック軌道体の標準類を保たない双有理変形の下での量子コホモロジーD加群の変化を研究した。また高種数グロモフ・ウイッテンポテンシャルの保型性を調べた。細野は、カラビ・ヤウ多様体のミラー対称性について詳細な研究を行った。
著者
齋藤 政彦 山田 泰彦 太田 泰広 望月 拓郎 吉岡 康太 野海 正俊 野呂 正行 小池 達也 稲場 道明 森 重文 向井 茂 岩崎 克則 金子 昌信 原岡 喜重 並河 良典 石井 亮 藤野 修 細野 忍 松下 大介 阿部 健 入谷 寛 戸田 幸伸 中島 啓 中村 郁 谷口 隆 小野 薫 ラスマン ウェイン 三井 健太郎 佐野 太郎
出版者
神戸大学
雑誌
基盤研究(S)
巻号頁・発行日
2012-05-31

不分岐な不確定特異点を持つ接続のモジュライ空間の構成,リーマン・ヒルベルト対応の研究により,対応するモノドロミー保存変形の幾何学を確立した.また,混合ツイスターD加群の理論の整備,可積分系の幾何学的研究において種々の成果を得た.高次元代数幾何学においては,端末的3次元射影多様体のある種の端収縮射の分類や, コンパクトケーラー多様体の標準環の有限生成性などの基本的結果のほか,モジュライ理論,シンプレクテック多様体に関する種々の成果を得た.量子コホモロジーの数学的定式化や,ミラー対称性の数学的理解についても大きな成果を得た.また,代数多様体の層の導来圏に関する研究においても種々の成果を得た.