著者
齋藤 政彦 山田 泰彦 太田 泰広 望月 拓郎 吉岡 康太 Rossman W.F 野海 正俊 大仁田 義裕 三井 健太郎 佐野 太郎 小池 達也
出版者
神戸大学
雑誌
基盤研究(S)
巻号頁・発行日
2017-05-31

本年度は、代数曲線上定義された放物接続や放物Higgs束のモジュライ空間の代数幾何学的構造の研究を継続して行った。また、付随するリーマン・ヒルベルト対応の幾何学、モノドロミー保存変形の微分方程式のパンルヴェ性などについても研究を行った。特に、現在残された一般の分岐的不確定特異点を持つ場合のモジュライ問題の設定、モジュライ空間の構成、次元公式、非特異性、シンプレクテック構造などについては、稲場がすでにプレプリント「Moduli Spacs of irregular singular parbolic connections of generic ramified type on a smooth projctive curve」において、肯定的な解答を得ている。また、確定特異点でスペクトル型を固定したときのモジュライ空間の構成、モノドロミー保存変形に関わる方程式のパンルヴェ性の証明についての論文を出版する予定である。岩木・小池は位相的漸化式とWKB解析の関係において、具体例による研究を進め、新しい例を構成しつつある。名古屋は、第6q差分パンルヴェ方程式のタウ関数がq共形ブロックでフーリエ展開で得られるという結果を得て、論文を発表した。また、この分野の国際研究集会を11月に神戸大学で開催した。望月は、円周と複素直線上の特異モノポールについて、色々な角度から研究し、新たな結果を得た。大仁田は、微分幾何学と可積分系の関係、特に調和写像の分類問題を研究した。山田は、多変数モノドロミー保存変形について、パンルヴェ方程式の退化や、パデ法の応用研究を行った。入谷はトーリック軌道体の標準類を保たない双有理変形の下での量子コホモロジーD加群の変化を研究した。また高種数グロモフ・ウイッテンポテンシャルの保型性を調べた。細野は、カラビ・ヤウ多様体のミラー対称性について詳細な研究を行った。
著者
野海 正俊 山田 泰彦
出版者
一般社団法人 日本数学会
雑誌
数学 (ISSN:0039470X)
巻号頁・発行日
vol.53, no.1, pp.62-75, 2001-01-30 (Released:2008-12-25)
参考文献数
47
被引用文献数
1
著者
齋藤 政彦 山田 泰彦 太田 泰広 望月 拓郎 吉岡 康太 野海 正俊 野呂 正行 小池 達也 稲場 道明 森 重文 向井 茂 岩崎 克則 金子 昌信 原岡 喜重 並河 良典 石井 亮 藤野 修 細野 忍 松下 大介 阿部 健 入谷 寛 戸田 幸伸 中島 啓 中村 郁 谷口 隆 小野 薫 ラスマン ウェイン 三井 健太郎 佐野 太郎
出版者
神戸大学
雑誌
基盤研究(S)
巻号頁・発行日
2012-05-31

不分岐な不確定特異点を持つ接続のモジュライ空間の構成,リーマン・ヒルベルト対応の研究により,対応するモノドロミー保存変形の幾何学を確立した.また,混合ツイスターD加群の理論の整備,可積分系の幾何学的研究において種々の成果を得た.高次元代数幾何学においては,端末的3次元射影多様体のある種の端収縮射の分類や, コンパクトケーラー多様体の標準環の有限生成性などの基本的結果のほか,モジュライ理論,シンプレクテック多様体に関する種々の成果を得た.量子コホモロジーの数学的定式化や,ミラー対称性の数学的理解についても大きな成果を得た.また,代数多様体の層の導来圏に関する研究においても種々の成果を得た.
著者
ANATOL N. Kirillov 有木 進 中島 啓 野海 正俊 山田 泰彦 前野 俊昭 柏原 正樹
出版者
京都大学
雑誌
基盤研究(B)
巻号頁・発行日
2003

平成15年度〜17年度にわたり採択された本研究課題について私ならびに研究分担者は優れた数学雑誌に14の論文を発表した。また、研究集会を自ら組織するとともに研究遂行上必要な打ち合わせのため、国内外の研究集会に参加した。討論や共同研究は定期的に行った。15年度の主なものとして、私とGuest氏(首都大学東京)が組織した国際ワークショップ「Quantum Cohomology」(於:京大数理研6月実施)があげられる。このワークショップにはこの分野での著名な数学者中島啓氏(京都大・理学研究科)、齋藤恭司氏(京都大・数理研)、B.Kim(S.Korea)、A.-L.Mare(Canada)、A.Buch(Sweden)をはじめ国内からもおよそ50人の参加者があった。16年度の主なものとして、私と野海氏(神戸大)が組織した国際ワークショップ「Tropical algebraic geometry and tropical combinatorics」(於:京大数理研8月実施)があげられる。このワークショップには「トロピカル数学」において世界をリードする数学者、A.knutson(UC Berkeley, USA)、E.Miller(Univ.ofMinnesota, USA)、G.Mikhalkin(Toronto Univ., Canada)、D.Speyer((UC Berkeley, USA)、O.Viro(Uppsala Univ., Sweden)、柏原正樹(数理研)、尾角正人(阪大)、山田泰彦(神戸大)をはじめとして約60名の参加者があった。両ワークショップともに盛況で日本におけるトロピカル数学と量子コホモロジーに対する関心を高めることとなった。その他、中国南海大学での国際ワークショップ「Combinatorics, Special Functions and Physics」に招聘され、講演を行った。本研究課題の主目標の一つである放物型コストカ多項式については一般化されたsaturation conjectureを証明した他、放物型コストカ多項式やSchur関数の新しい興味深い性質を示した。Schubert Calculusと非可換微分法の関係についてはいくつかの重要な結果が、私と前野氏によって示された。特にある種の非可換代数多様体に対し平坦接続の生成する代数を記述することに成功しB_n型非可換Schubert多項式のMonk公式を証明した。