著者
佐々木 直彦 堀井 胤匡 藤原 幹男 斎藤 英之 三澤 俊平
出版者
一般社団法人 日本鉄鋼協会
雑誌
鉄と鋼 (ISSN:00211575)
巻号頁・発行日
vol.86, no.1, pp.45-50, 2000-01-01 (Released:2009-06-19)
参考文献数
13
被引用文献数
7

Micro-strucure, micro-hardness and micro-absorbed impact energy in the Japanese sword have been investigated to clarify excellent mechanical properties of the Japanese sword. The Japanese sword specimen used in the present research has been made by using TSUKURIKOMI process which combines four kinds of steels; HAGANE (edge), SHINGANE (core), MUNEGANE (back) and KAWAGANE (side) steels, with different carbon contents. By this process, HASAKI (edge) side becomes high carbon steel and MUNE (back) side possesses low carbon steel. The cooling velocity in quenching of the Japanese sword is controlled by TSUCHIOKI treatment which coats the clay thinner in the HASAKI side and thicker in the MUNE side. The HASAKI side is quickly cooled and the MUNE side is slowly cooled. The micro-structure in the HASAKI side shows martensite while the MUNE side shows the coexist structure of ferrite and pearlite. The HASAKI side has a lower value while the MUNE side shows a higher value in the micro absorbed impact energies obtained with the 1.0 and 0.7 mm square miniaturized specimens. It has been shown clearly that the TSUKURIKOMI and the TSUCHIOKI processes give the excellent gradated balance of strength-toughness to the Japanese sword.The ORIKAESHI (folding) forging has an effect both on the carbon content and as quenched hardness in HAGANE steel. The most suitable times of ORIKAESHI cycles which adjust to the carbon content of 0.55-0.60 mass% and hardness of 800HV1 have been determined to be thirteen times. These times of ORIKAESHI cycles correspond to the optimum traditional cycles lying between twelve and fifteen times. The present research from the viewpoint of the metallurgy sheds light on the empirical rule in the traditional Japanese sword processing.
著者
佐々木 直彦 桃野 正
出版者
一般社団法人 日本鉄鋼協会
雑誌
鉄と鋼 (ISSN:00211575)
巻号頁・発行日
vol.93, no.12, pp.792-798, 2007-12-01 (Released:2009-02-13)
参考文献数
6
被引用文献数
3 3

The Japanese sword has excellent strength-toughness balance given by two traditional processes. One process is compounding of inner tough iron and outer strong steel. And the other process is cooling-rate control quenching by using thickness of clay-coating before quenching. However, it is a precondition for acquiring high strength-toughness that carbon content of sword parts are regulated in proper quantities. Carbon content of sword parts is very important and controlled under forging process which contains TSUMI-WAKASHI (forge-welding piled steel chips) work and fold-forging.Therefore, changes in carbon content of TAMA-HAGANE steels and carbon steels under traditional forging process were investigated in this study. Changes in carbon content depended on enclosing decarburized or carburized surface in steel as forge-weld interface. Total changes in carbon content were proportional to total layers of included surface in steel. Changes in carbon content per one forge-welded layer. “d (mass%/layer)” was ruled by carbon content of raw materials “C0 (mass%)”. When C0 is over 0.2 mass%, carbon content of forged steel is decreasing and the more C0, the more |d |. C0 is under 0.2 mass%, carbon content is increasing. The mass of forged steels is 4% increasing per one fold-forging cycle, but d is not affected by changes in mass of them.
著者
佐々木 直彦 堀井 胤匡 藤原 幹男 斎藤 英之 三澤 俊平
出版者
社団法人日本鉄鋼協会
雑誌
鐵と鋼 : 日本鐡鋼協會々誌 (ISSN:00211575)
巻号頁・発行日
vol.86, no.1, pp.45-50, 2000-01

Micro-strucure, micro-hardness and micro-absorbed impact energy in the Japanese sword have been investigated to clarify excellent mechanical properties of the Japanese sword. The Japanese sword specimen used in the present research has been made by using TSUKURIKOMI process which combines four kinds of steels ; HAGANE (edge), SHINGANE (core), MUNEGANE (back) and KAWAGANE (side) steels, with different carbon contents. By this process, HASAKI (edge) side becomes high carbon steel and MUNE (back) side possesses low carbon steel. The cooling velocity in quenching of the Japanese sword is controlled by TSUCHIOKI treatment which coats the clay thinner in the HASAKI side and thicker in the MUNE side. The HASAKI side is quickly cooled and the MUNE side is slowly cooled. The micro-structure in the HASAKI side shows martensite while the MUNE side shows the coexist structure of ferrite and pearlite. The HASAKI side has a lower value while the MUNE side shows a higher value in the micro absorbed impact energies obtained with the 1.0 and 0.7mm square miniaturized specimens. It has been shown clearly that the TSUKURIKOMI and the TSUCHIOKI processes give the excellent gradated balance of strength-toughness to the Japanese sword. The ORIKAESHI (folding) forging has an effect both on the carbon content and as quenched hardness in HAGANE steel. The most suitable times of ORIKAESHI cycles which adjust to the carbon content of 0.55-0.60mass% and hardness of 800HV1 have been determined to be thirteen times. These times of ORIKAESHI cycles correspond to the optimum traditional cycles lying between twelve and fifteen times. The present research from the viewpoint of the metallurgy sheds light on the empirical rule in the traditional Japanese sword processing.
著者
佐々木 直彦 桃野 正
出版者
社団法人日本鉄鋼協会
雑誌
鐵と鋼 : 日本鐡鋼協會々誌 (ISSN:00211575)
巻号頁・発行日
vol.93, no.12, pp.792-798, 2007-12-01
被引用文献数
1 3

The Japanese sword has excellent strength-toughness balance given by two traditional processes. One process is compounding of inner tough iron and outer strong steel. And the other process is cooling-rate control quenching by using thickness of clay-coating before quenching. However, it is a precondition for acquiring high strength-toughness that carbon content of sword parts are regulated in proper quantities. Carbon content of sword parts is very important and controlled under forging process which contains TSUMI-WAKASHI (forge-welding piled steel chips) work and fold-forging. Therefore, changes in carbon content of TAMA-HAGANE steels and carbon steels under traditional forging process were investigated in this study. Changes in carbon content depended on enclosing decarburized or carburized surface in steel as forge-weld interface. Total changes in carbon content were proportional to total layers of included surface in steel. Changes in carbon content per one forge-welded layer. "d (mass%/layer)" was ruled by carbon content of raw materials "C_0 (mass%)". When C_0 is over 0.2 mass%, carbon content of forged steel is decreasing and the more C_0, the more |d|. C_0 is under 0.2 mass%, carbon content is increasing. The mass of forged steels is 4% increasing per one fold-forging cycle, but d is not affected by changes in mass of them.
著者
佐々木 直彦(胤成)
出版者
一般社団法人 溶接学会
雑誌
溶接学会誌 (ISSN:00214787)
巻号頁・発行日
vol.84, no.7, pp.504-507, 2015 (Released:2016-02-02)
参考文献数
10