著者
松野 哲男 巽 好幸 島 伸和 鈴木 桂子 市原 寛 清杉 孝司 中岡 礼奈 清水 賢 佐野 守 井和丸 光 両角 春寿 杉岡 裕子 中東 和夫 山本 揚二朗 林 和輝 西村 公宏 古川 優和 堀内 美咲 仲田 大地 中村 崚登 廣瀬 時 瀬戸 康友 大重 厚博 滝沢 秀明 千葉 達朗 小平 秀一
出版者
日本地球惑星科学連合
雑誌
日本地球惑星科学連合2018年大会
巻号頁・発行日
2018-03-14

We started integrated marine investigations of Kikai Caldera with T/S Fukae-maru of Kobe University on October, 2016. Aims of our investigations are to reveal the structure of the caldera, the existence of magma reservoir, and to understand the mechanism of catastrophic caldera-forming eruption at 7.3 ka and a potential for a future catastrophic eruption. We conducted multi-beam echo sounder mapping, multi-channel seismic reflection (MCS) surveys, remotely operated vehicle (ROV) observations, rock sampling by dredging and diving, geophysical sub-seafloor imaging with ocean bottom seismometers, electro-magnetometers (OBEMs), some of which equip absolute pressure gauge, ocean-bottom magnetometers, and surface geomagnetic surveys.The first finding of our investigations is lines of evidence for creation of a giant rhyolite lava dome (~32 km3) after the caldera collapse. This dome is still active as water column anomalies accompanied by bubbling from its surface are observed by the water column mapping. Chemical characteristics of dome-forming rhyolites akin to those of presently active small volcanic cones are different from those of supereruption. The voluminous post-caldera activity is thus not caused simply by squeezing the remnant of syn-caldera magma but may tap a magma system that has evolved both chemically and physically since the 7.3-ka supereruption.We have been conducting integrated analyses of our data set, and have planned the fourth research cruise with T/S Fukae-maru on March, 2018, consisting of MCS survey, ROV observation, OBEM with absolute pressure gauge observation, and bathymetric and surface geomagnetic survey. We will introduce results of the data analyses and the upcoming cruise in the presentation.
著者
山本 揚二朗 高橋 努 石原 靖 尾鼻 浩一郎 三浦 誠一 小平 秀一 金田 義行
出版者
日本地球惑星科学連合
雑誌
JpGU-AGU Joint Meeting 2017
巻号頁・発行日
2017-03-10

The Ryukyu Trench is a plate convergence zone whose total length of about 1,300 km, and its northern end borders on the western end of the Nankai Trough. Due to the subduction of Philippine Sea plate in northwest direction, active seismicity was observed in the forearc region of Ryukyu arc. In addition, occurrence of large earthquakes was well known; for example, 1911 off-Amami (M8.0), 1923 near Tanegashima (M7.1), and 1774 Yaeyama (M7.4) earthquakes. On the other hand, both detection capacity and location accuracy of earthquakes in this region were not enough to discuss the detailed seismicity pattern and plate geometry, since the seismic network is limited on sparse-distributed islands. To know the seismicity, lithospheric structures and plate geometry, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) launched a series of seismic observations and active-source seismic surveys at the Ryukyu arc from 2013, as a part of research project funded by Ministry of Education, Culture, Sports, Science and Technology, Japan.In FY2016, we have conducted a passive source observation in the northern Ryukyu forearc region. We have deployed 47 seismic stations including 43 ocean bottom seismographs (OBS) and 4 onshore stations. All OBSs are equipped with short period (4.5 Hz) geophones. Onshore stations are deployed at Tanegashima (two stations), Nakanoshima, and Akuseki-Jima, composed of broadband and/or 2 Hz seismometers. The average separation of seismic network is about 30 km, and covered the area of 250 km and 160 km in trench parallel and normal directions, respectively. The observation period of OBS is about 4 months, from September to December 2016. From the continuous seismic record, we have detected more than three-times the number of events identified from Japan Meteorological Agency (JMA) catalogue. We also confirmed that almost all our seismic stations recorded the seismic signal when the JMA magnitude of event located within our network is larger than 2.5. In this presentation, we will show the preliminary result of hypocenter relocation analysis.